

July 31, 2017

Texas Commission on Environmental Quality (TCEQ) Air Permits Division Rule Registrations Section Air Permits Initial Review Team (APIRT) (Submitted via STEERS) 12100 Park 35 Circle Building C, Third Floor, MC 163 Austin, TX 78753

RE: Permit By Rule Registration MMEX Resources Corporation

Customer Reference Number: TBA

Regulated Entity Reference Number: TBA

Dear Sir or Madam:

MMEX Resources Corporation (MMEX) is proposing to construct and operate a greenfield modular refinery located near Fort Stockton, in Pecos County, Texas (Pecos County Refinery [PCR]). MMEX is a new customer; therefore, is requesting Texas Commission on Environmental Quality (TCEQ) to assign a Customer Reference No. (CN) and TCEQ Regulated Entity Reference No. (RN) for the modular Pecos County Refinery.

On June 7, 2017, MMEX met with Kristyn Campbell, Ryan Tedford, and David Reyna to discuss pre-application air permitting considerations for the Pecos County Refinery.

With this Permit by Rule (PBR) Registration, MMEX proposes to authorize emissions from all equipment at the modular Pecos County Refinery under the following PBRs:

MMEX Resources Corporation 3616 Far West Blvd #117-321 Austin, Texas 78731 USA T:855.880.0400

- 30 Texas Administrative Code (30 TAC) §106.183 Boilers, Heaters, and Other Combustion Devices;
- 30 TAC §106.261 Facilities (Emission Limitations);
- 30 TAC §106.263 Routine Maintenance, Startup and Shutdown of Facilities, and Temporary Maintenance Facilities;
- 30 TAC §106.355 Pipeline Metering, Purging, and Maintenance;
- 30 TAC §106.478 Storage Tank and Change of Service;
- 30 TAC §106.492 Flares;
- > 30 TAC §106.511 Portable and Emergency Engines and Turbines; and
- 30 TAC §106.532 Water and Wastewater Treatment.

TCEQ checklists and additional supporting documentation are included herein. The enclosed application demonstrates that the applicable requirements of 30 TAC Chapter 106 will be met. The PBR application is being submitted via the TCEQ STEERS system. The \$100 PBR fee has been submitted to the TCEQ Revenue Section via the STEERS ePermits system at the time of submittal. Please do not hesitate to contact our technical contact, Brian Burdorf, at the submitted or me at the strength of you have any questions or require further information regarding this Permit by Rule registration.

Sincerely,

MMEX Resources Corporation

Jack W. Hanks President, CEO & Director

Attachments

Mr. Camilo Chavez, Jr, TCEQ Region 7, Air Section, Manager, Midland
 Ms. Kristyn Campbell, TCEQ Rule Registrations Section, Team Leader, Austin
 Mr. Brian Burdorf, Trinity Consultants, Inc., Director

MMEX Resources Corporation 3616 Far West Blvd #117-321 Austin, Texas 78731 USA T:855.880.0400

TCEQ PERMIT BY RULE REGISTRATION MMEX Resources Corporation > Pecos County Refinery Pecos County, Texas

Prepared By:

Brian Burdorf – Director Neelesh Sule – Senior Consultant Nicholas Blandino – Consultant

TRINITY CONSULTANTS

12700 Park Central Drive Suite 2100 Dallas, TX 75251 (972) 661-8100 Fax: (972) 385-9203

July 2017

Project 174401.0159

Environmental solutions delivered uncommonly well

TABLE	OF	CON	TENTS	I	

TABL	LE OF CONTENTS	I
1.	TCEQ FORMS	1-1
2.	PERMIT BY RULE FEE	2-1
3.	EXECUTIVE SUMMARY	3-1
4.	PROCESS DESCRIPTION & FLOW DIAGRAM	4-1
5.	SUMMARY OF EMISSIONS	5-1
6.	EMISSIONS DATA AND CALCULATIONS	6-1
7.	GENERAL PBR REQUIREMENTS	7-1
8.	SPECIFIC PBR REQUIREMENTS	8-1
9.	STATE AND FEDERAL APPLICABILITY	9-1
10.	CRUDE ANALYSIS	10-1
11.	TCEQ CHECKLISTS	11-1
12.	PLOT PLAN	12-1
13.	AREA MAP	13-1
APPE	NDIX A: SUPPLEMENTAL INFORMATION	A-1

i

1. TCEQ FORMS

Core Data Form

PI-7 CERT

MMEX Resources Corporation | Pecos County Refinery Trinity Consultants

1-1

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175. SECTION I: General Information

1. Reason for Submission (If other is a	checked please de	scribe in	space provid	led.)				
New Permit, Registration or Autho	rization (Core Data	a Form sh	ould be sub	mitted v	with ti	he program application	on.)	
Renewal (Core Data Form should	be submitted with	n the rene	wal form)		Othe	er		
2. Customer Reference Number (if issue	ed)	Follow this	s link to sear	3	. Reg	ulated Entity Referen	nce Number	(if issued)
CNI for CN or PN numbers in								
Central Registry**								
SECTION II: Customer Informat				_				
4. General Customer Information	5. Effective Date	e for Cusi	tomer Inform	ation L	Jpdat	es (mm/dd/yyyy)		
New Customer			stomer Infor			🔲 Change in	Regulated	Entity Ownership
L_Change in Legal Name (Verifiable wi	th the Texas Secr	etary of S	itate or Texa	s Com	ptrolle	er of Public Accounts)	
The Customer Name submitted	here may be u	Ipdated	automati	ically	bas	ed on what is cu	rrent and	active with the
Texas Secretary of State (SOS)								
6. Customer Legal Name (If an individual	, print last name first	e.g.: Doe	, John)		<u>f new</u>	Customer, enter prev	ious Custon	er below;
MMEX Resources Corporation								
7. TX SOS/CPA Filing Number 8. TX State Tax ID (11 digits) 9. Federal Tax ID (9 digits) 10. DUNS Number (if applicable)								
0802736207 32063912656								
11. Type of Customer: 🔀 Corporation								
Government: 🗌 City 🔲 County 🗍 Federal	State Other		Sole Proprie	torship	, i	Other:		
12. Number of Employees					13. Ini	dependently Owned	and Operate	ed?
0-20 21-100 101-250	251-500		d higher		X Ye			
14. Customer Role (Proposed or Actual) -	as it relates to the R	Regulated E	Entity listed or	this for	m. Pk	ease check one of the l	following:	
Owner Opera		and the second s	wner & Ope					
	onsible Party		oluntary Clea	anup A	pplica	ant Other:		
15. Mailing 3616 Far West Blvd #	117-321							
Address:								
City Austin		State	TX	ZIP	78	3731	ZIP + 4	3082
16. Country Mailing Information (if outside	USA)		17.	E-Mail /	Addre	ess (if applicable)		
18. Telephone Number	19.	Extensio	n or Code			20. Fax Number	(if applicab	le)
						() -		
SECTION III: Regulated Entity Ir	formation					<u></u>		

21. General Regulated Entity Information (If 'New Regulated Entity" is selected below this form should be accompanied by a permit application)
 New Regulated Entity Update to Regulated Entity Name Update to Regulated Entity Information
 The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal of organizational endings such as Inc, LP, or LLC).
 22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

Pecos County Refinery

TCEQ-10400 (04/15)

·							
23. Street Address of the Regulated Entity:				-			
(No PO Boxes)	City		State		ZIP		ZIP+4
24. County	Pecos						
	_	Enter Physical L	ocation Descript	ion if no street	address is p	rovided.	
25. Description to Physical Location:	From int go 7.2 m	c of E Dickison Blv iles. Cross the rail	d and N Main St road tracks. Go s	in Fort Stockt	on go 0.5 mi. oad to be bui	Right onto FM	1053 N, go 12.5 mi. Turn ri ne new road 2.6 mi to the sit
26. Nearest City				3		State	Nearest ZIP C
Fort Stockton TX 79735						79735	
27. Latitude (N) In Decim	al:	30.984957		28. Lo	ngitude (W)	In Decimal:	-102.722038
Degrees	Minutes		Seconds	Degrees	s	Minutes	Seconds
30	59	ł	5.84	-102		43	19.34
29. Primary SIC Code (4 dig	its) 3(). Secondary SIC	Code (4 digits)	31. Primar (5 or 6 digits)	y NAICS Cod		Secondary NAICS Code or 6 digits)
2911				324110		(31	
33. What is the Primary Bus	siness of th	is entity? (Do not	repeat the SIC or N/	AICS description.)			
Crude oil refinery					-	1	
34. Mailing	3616 Fa	West Blvd #117-3	321				
Address:							
Aduless.	City A	ustin	State	TX	ZIP	78731	ZIP + 4 3082
35. E-Mail Address:							
36. Telephone Number 37. Extension			sion or Code		38. Fax Nur	nber (if applicable)	
()(Ĭ						
39. TCEQ Programs and ID Num Form instructions for additional guid	bers Check a	all Programs and write i	in the permits/registra	ation numbers that	it will be affected	l by the updates su	bmitted on this form. See the Core
Dam Safety	Dist	ricts	Edwards	Aquifer	Emissi	ons Inventory A	ir Industrial Hazardous W
	-					-	
Municipal Solid Waste	New	Source Review Ai			Petroleu	m Storage Tan	k 🔲 PWS
	-						
Sludge	Ston	m Water	Title V Air		Tires		Used Oil
Voluntary Cleanup	U Was	te Water	Wastewater Agriculture		U Water Rights		Other:
					<u> </u>	1.92.1	
SECTION IV: Preparer	Informati	on			_		
10. Name: Brian Burdorf					41. Title: D	irector	
42. Telephone Number	43. Ext./(Code	44. Fax Numb	er	45. E-Mail /	Address	
		1-2-1 - 54	()	1			

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Company: MMEX Resources Corporation		Job Title:	Chief Executive Officer
Name(In Print): Jack W. Hanks		Phone:		
Signature:			Date:	

A. Company or Other Legal Customer Name: MMEX Resources Corporation B. Company Official Contact Information (⊠ Mr. □ Mrs. □ Ms. □ Other) Name: Jack W. Hanks
Name: Jack W. Hanks Title: Chief Executive Officer Mailing Address: 3616 Far West Blvd #117-321 City: Austin State: TX ZIP Code: 78731-3082 Phone: Fax: E-mail Address: All PBR registration responses will be sent via e-mail unless a hard copy is specifically requested. The company official must initial here if hard copy is requested
Title: Chief Executive Officer Mailing Address: 3616 Far West Blvd #117-321 City: Austin State: TX ZIP Code: 78731-3082 Phone: Fax: E-mail Address: Fax: All PBR registration responses will be sent via e-mail unless a hard copy is specifically requested. The company official must initial here if hard copy is requested (please initial) C. Technical Contact Information (\[\begin{tabular}{c}{cmmode Mr. \begin{tabular}{cmmode Mrs. \begin{tabular}
Mailing Address: 3616 Far West Blvd #117-321 City: Austin State: TX ZIP Code: 78731-3082 Phone: Fax: E-mail Address: Fax: All PBR registration responses will be sent via e-mail unless a hard copy is specifically requested. The company official must initial here if hard copy is requested(please initial) C. Technical Contact Information (X Mr.] Mrs.] Ms.] Other) Name: Brian Burdorf Title: Director
City: Austin State: TX ZIP Code: 78731-3082 Phone: Fax: E-mail Address: Fax: All PBR registration responses will be sent via e-mail unless a hard copy is specifically requested. The company official must initial here if hard copy is requested(please initial) C. Technical Contact Information (\[\begin{tabular}{c} Mr. \[Delta Mrs. \[Delta
Phone: Fax: E-mail Address: Fax: All PBR registration responses will be sent via e-mail unless a hard copy is specifically requested. The company official must initial here if hard copy is requested(please initial) C. Technical Contact Information (\Box Mr. \Box Mrs. \Box Ms. \Box Other) Name: Brian Burdorf Title: Director
Phone: Fax: E-mail Address: Fax: All PBR registration responses will be sent via e-mail unless a hard copy is specifically requested. The company official must initial here if hard copy is requested. (please initial) C. Technical Contact Information (\Box Mr. \Box Mrs. \Box Ms. \Box Other) Name: Brian Burdorf Title: Director
All PBR registration responses will be sent via e-mail unless a hard copy is specifically requested. The company official must initial here if hard copy is requested(please initial) C. Technical Contact Information (\[\Box] Mr. \[Dox] Mrs. \[Dox] Ms. \[Dother) Name: Brian Burdorf Title: Director
company official must initial here if hard copy is requested(please initial) C. Technical Contact Information (X Mr.] Mrs.] Ms.] Other) Name: Brian Burdorf Title: Director
Name: Brian Burdorf Title: Director
Title: Director
Company Name: Trinity Consultants
Mailing Address: 12700 Park Central Dr, Suite 2100
City: Dallas State: TX ZIP Code: 75251
Phone: Fax:
E-mail:
II. Facility and Site Information
A. Name and Type of Facility
Facility Name: Pecos County Refinery
Type of Facility: Modular Refinery 🛛 Permanent
For portable units, please provide the serial number of the equipment being authorized below.
Serial No: Serial No:
B. Facility Location Information
Street Address:
If there is no street address, provide written driving directions to the site and provide the closest city or town, county, and ZIP code for the site (attach description if additional space is needed).
From intx of E Dickison Blvd and N Main St in Fort Stockton go 0.5 miles. Right onto FM 1053 N, go 12.5 mi. Turn right, go 7.2 miles. Cross the railroad tracks. Go straight (new road to be built) and follow the new road 2.6 mi to the site.
City: Fort Stockton County: Pecos ZIP Code: 79735

TCEQ-20182 (APDG 5379v17, Revised 07/15) PI-7-CERT This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

Page _____ of ____

II. Facility and Site Information (continued)					
C. TCEQ Core Data Form					
Is the Core Data Form (TCEQ Form Number 10400) att	ached?	🛛 YES 🗌 NO			
If "NO," provide customer reference number (CN) and r	egulated entity number (RN) below.				
Customer Reference Number (CN):					
Regulated Entity Number (RN):					
D. TCEQ Account Identification Number (if known):					
E. PBR number(s) claimed under 30 TAC Chapter 10	06				
(List all the individual rule number(s) that are being claimed.)					
106.183	106.355				
106.261	106.478				
106.263	106.492, and 106.511				
F. Historical Standard Exemption or PBR					
Are you claiming a historical standard exemption or PBR?					
If "YES," enter rule number(s) and associated effective d	late in the spaces provided below.				
Rule Number(s)	Rule Number(s)Effective Date				
G. Previous Standard Exemption or PBR Registration	n Number				
Is this authorization for a change to an existing facility p standard exemption or PBR?	previously authorized under a] YES 🖾 NO			
If "YES," enter previous standard exemption number(s) effective dates in the spaces provided below.	and PBR registration number(s), and	l associated			
Standard Exemption and PBR Registration Number(s)	Effective Date				
H. Other Facilities at this Site Authorized by Standard	d Exemption, PBR, or Standard Perm	it			
Are there any other facilities at this site that are authorized by an Air Standard Exemption, UYES NO PBR, or Standard Permit?					
If "YES," enter standard exemption number(s), PBR reg number(s), and associated effective date in the spaces p		ermit registration			
Standard Exemption, PBR Registration, and Standard Permit Registration Number(s)	Effective Date				

-					
II.	Facility and Site Information (continued)				
I.	Other Air Preconstruction Permits				
Are	there any other air preconstruction permits at this	site?	TYES NO		
If "Y	ES," enter permit number(s) in the spaces provide	d below.	<u>.</u>		
J.	Affected Air Preconstruction Permits				
Does	s the PBR being claimed directly affect any permitt	ed facility?	🗌 YES 🖾 NO		
If "Y	If "YES," enter the permit number(s) in the spaces provided below.				
K.	Federal Operating Permit (FOP) Requirements (30 TAC Chapter 122 Applicability)			
1.	1. Is this facility located at a site that is required to obtain an FOP USE VES NO To Be Determined pursuant to 30 TAC Chapter 122?				
If th	If the site currently has an existing FOP, enter the permit number:				
	Check the requirements of 30 TAC Chapter 122 that will be triggered if this certification is accepted. <i>(check all that apply)</i>				
☐ Initial Application for an FOP ☐ Significant Revision for an SOP ☐ Minor Revision for an SOP					
	Operational Flexibility/Off Permit Notification for an SOP Revision for a GOP				
П П	o be Determined 🛛 None				
 Identify the type(s) of FOP issued and/or FOP application(s) submitted/pending for the site. (check all that apply) 					
	OP GOP GOP GOP application	n/revision (submitted or under APD	review)		
N	A SOP application/revision (submi	tted or under APD review)			
III. Fee Information (See Section VII. for address to send fee or go to www.tceq.texas.gov/epay to pay online.)					
A.	Fee Requirements				
Is a	fee required per Title 30 TAC § 106.50?		YES 🗌 NO		
If "N	If "NO," specify the exception (<i>check all that apply</i>)				
1.	Registration is solely to establish a federally enfo	rceable emission limit.	I YES I NO		
2.	Registration is within six months of an initial PB deficiencies, administrative changes, or other allo		TYES NO		
3.	Registration is for a remediation project (30 TAC	\$ 106.533).	YES NO		

III.	Fee Information (<i>See Section VII. for address to send fee or go to www.tceq.tex online.) (continued)</i>	xas.gov/epay to pay				
B.	Fee Amount					
1.	1. A \$100 fee is required if <i>any</i> of the answers in III.B.1 are "YES."					
This	business has less than 100 employees.	YES 🗌 NO				
This	business has less than 6 million dollars in annual gross receipts.	YES 🗌 NO				
	This registration is submitted by a governmental entity with a population of less than \Box YES \boxtimes NO 10,000.					
This	registration is submitted by a non-profit organization.	☐ YES ⊠ NO				
2.	2. A \$450 fee is required for all other registrations.					
C.	C. Payment Information					
Chee	ck/money order/transaction or voucher number:					
Indi	vidual or company name on check:					
Fee .	Amount: \$ 100.00					
Was	fee paid online?	YES 🗌 NO				
IV.	IV. Technical Information Including State And Federal Regulatory Requirements					
Plac	e a check next to the appropriate box to indicate what is included in your	submittal.				
requ	NOTE: Any technical or essential information needed to confirm that facilities are meeting the requirements of the PBR must be provided. Not providing key information could result in an automatic deficiency and voiding of the project.					
A.	A. PBR requirements (Checklists are optional; however, your review will go faster if you provide applicable checklists.)					
Did	you demonstrate that the general requirements in 30 TAC § 106.4 are met?	🖂 YES 🗌 NO				
Did	you demonstrate that the individual requirements of the specific PBR are met?	🖂 YES 🗌 NO				
B.	Confidential Information (All pages properly marked "CONFIDENTIAL")	🗌 YES 🖾 NO				
C.	Process Flow Diagram	🖂 YES 🗌 NO				
D.	Process Description	🖂 YES 🗌 NO				
E.	Maximum Emissions Data and Calculations	🖂 YES 🗌 NO				
und	Note: If the facilities listed in this registration are subject to the Mass Emissions Cap & Trade program under 30 TAC Chapter 101, Subchapter H, Division 3, the owner/operator of these facilities must possess NO _x allowances equivalent to the actual NO _x , emissions from these facilities.					

IV. Technical Information Including State And Federal Regulatory Requirements *(continued)*

Place a check next to the appropriate box to indicate what is included in your submittal.

Note: Any technical or essential information needed to confirm that facilities are meeting the requirements of the PBR must be provided. Not providing key information could result in an automatic deficiency and voiding of the project.

F.	Is this certification being submitted to certify the emissions for the entire site?	🖂 YES 🗌 NO
----	---	------------

If "NO," include a summary of the specific facilities and emissions being certified.

G. Table 1(a) (Form 10153) Emission Point Summary

YES 🗌 NO

feet

H. Distances from Property Line and Nearest Off-Property Structure

Distance from this facility's emission release point to the nearest property line: 250_____

Distance from this facility's emission release point to the nearest off-property structure: > 5,000 _____ feet

I. Project Status

Has the company implemented the project or waiting on a response from TCEQ? Implemented 🖾 Waiting

J. Projected Start of Construction and Projected Start of Operation Dates

Projected Start of Construction (provide date): 10/1/2017_

Projected Start of Operation (provide date): 10/1/2018

V. Delinquent Fees

This form **will not be processed** until all delinquent fees and/or penalties owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ is paid in accordance with the Delinquent Fee and Penalty Protocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ Web site at: www.tceq.texas.gov/agency/delin/index.html.

VI. Signature For Registration And Certification

The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. I further state that to the best of my knowledge and belief, the project for which this application is made will not in any way violate any provision of the Texas Water Code (TWC), Chapter 7; the Texas Health and Safety Code, Chapter 382, the Texas Clean Air Act (TCAA); the air quality rules of the Texas Commission on Environmental Quality; or any local governmental ordinance or resolution enacted pursuant to the TCAA. I further state that I understand my signature indicates that this application meets all applicable nonattainment, prevention of significant deterioration, or major source of hazardous air pollutant permitting requirements. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties.

Name (printed): Jack W. Hanks	
Signature (original signature required):	And h ful
Date: JULY 31, 2017	$\rho \rightarrow \rho$

2.	PERMIT BY RULE FEE

Per Title 30 of the Texas Administrative Code (30 TAC) Chapter 106 Section (§) 50 – *Registration Fees for Permits by Rule,* a \$100 fee is required to be submitted for this registration. This fee was submitted to the TCEQ Revenue Section via TCEQ's STEERS ePermits system.

MMEX Resources Corporation (MMEX) is proposing to construct and operate a greenfield modular refinery located near Fort Stockton, in Pecos County, Texas (Pecos County Refinery [PCR]). MMEX is a new customer; therefore, is requesting Texas Commission on Environmental Quality (TCEQ) to assign a Customer Reference No. (CN) and TCEQ Regulated Entity Reference No. (RN) for the modular PCR. MMEX met with Kristyn Campbell, Ryan Tedford, and David Reyna on June 7, 2017, to discuss air permitting considerations for the Pecos County Refinery.

Pecos County is currently classified as an attainment or unclassified area for all criteria pollutants.¹ The Pecos County Refinery will be a minor source with respect to Prevention of Significant Deterioration (PSD) and for Federal Operating Permit program (aka Title V).

The proposed modular refinery will have a nominal refining capacity of 10,000 bpd of crude oil to extract diesel. With this Permit By Rule (PBR) Registration, MMEX proposes to authorize emissions from all equipment at the modular PCR under the following PBRs.

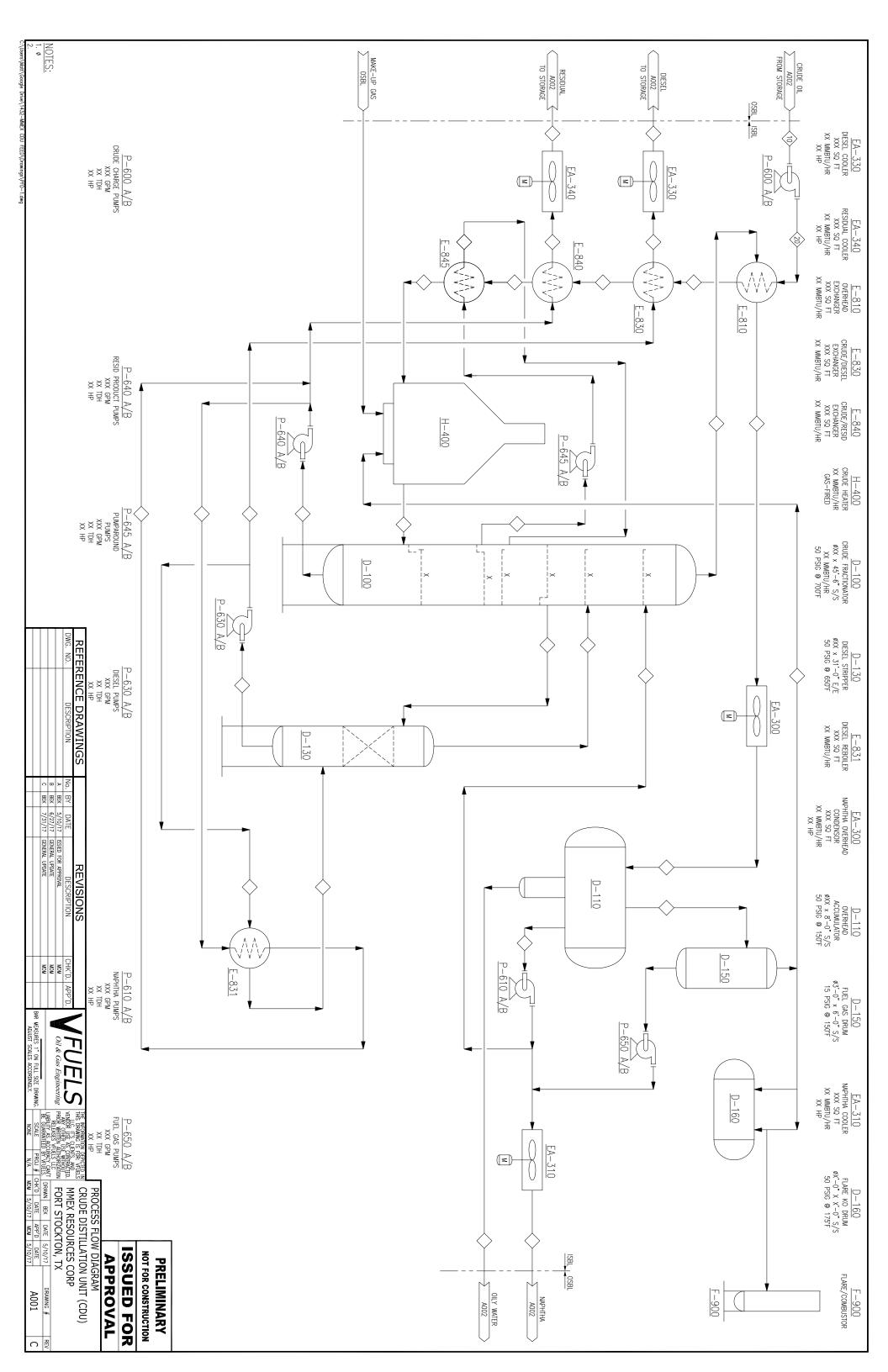
- > 30 Texas Administrative Code (30 TAC) §106.183, Boilers, Heaters, and Other Combustion Devices;
- > 30 TAC §106.261, Facilities (Emission Limitations);
- > 30 TAC §106.263, Routine Maintenance, Startup and Shutdown of Facilities, and Temporary Maintenance Facilities;
- > 30 TAC §106.355, Pipeline Metering, Purging, and Maintenance;
- > 30 TAC §106.478, Storage Tank and Change of Service;
- > 30 TAC §106.492, Flares;
- > 30 TAC §106.511, Portable and Emergency Engines and Turbines; and
- > 30 TAC §106.532, Water and Wastewater Treatment.

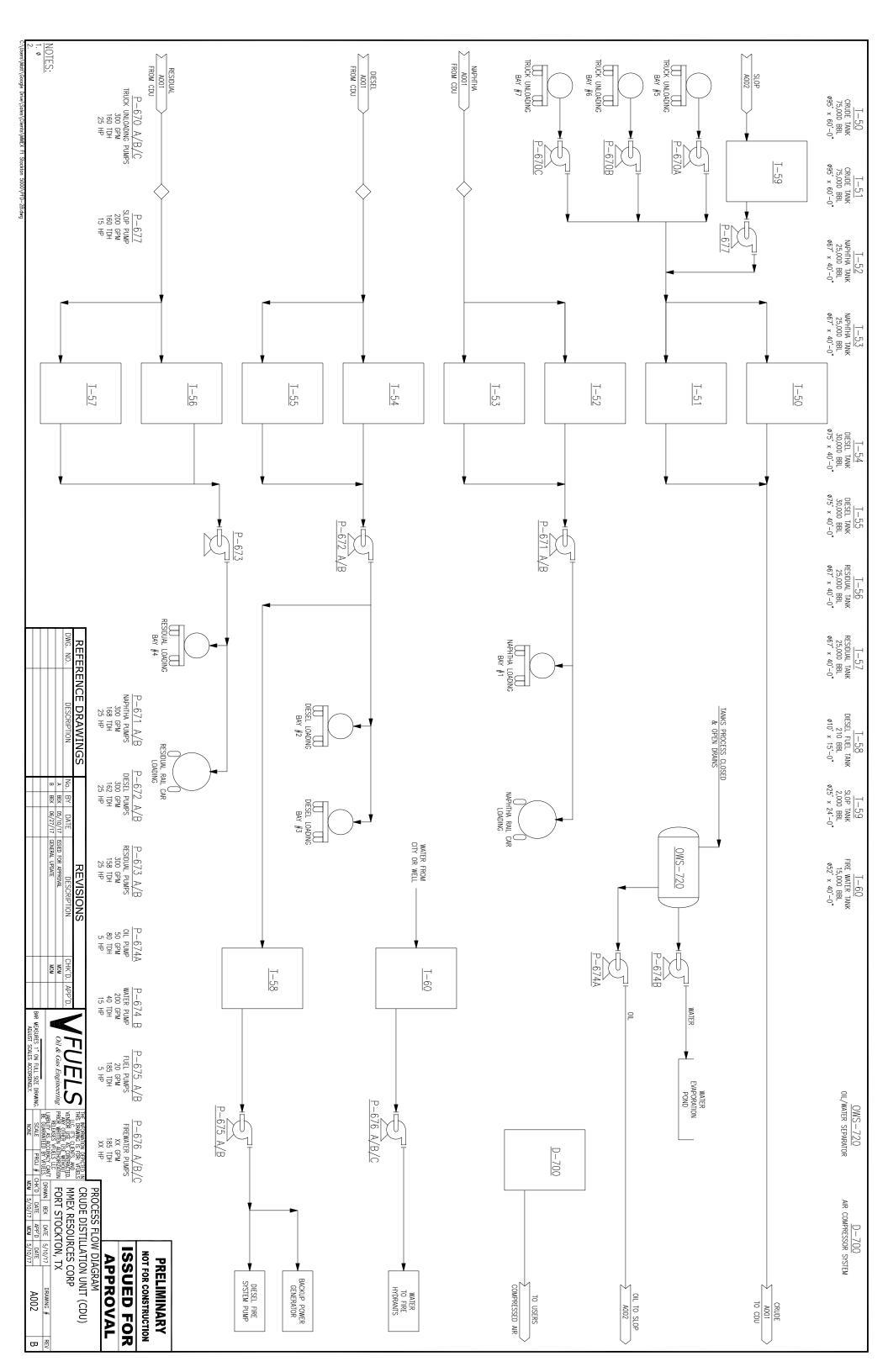
This registration package includes TCEQ Core Data Form, PI-7-CERT, process description, process flow diagram, emissions calculations, regulatory applicability assessments, and additional supporting documentation demonstrating that the applicable requirements of 30 TAC Chapter 106 will be met. The PBR application is being submitted via the TCEQ STEERS system. The \$100 PBR fee has been submitted to the TCEQ Revenue Section via the STEERS ePermits system at the time of submittal.

¹ The United States Environmental Protection Agency (U.S.EPA) Green Book. Source: <u>https://www3.epa.gov/airquality/greenbook/hbcs.html#TX</u>. Accessed in June 2017.

Crude oil from the crude oil storage tanks (EPN TK50 and TK51) will be pumped to the crude distillation unit (CDU) for refining. A CDU is a simplified refinery and allows for distillation of crude into low-octane naphtha, diesel and residual. It does not include more complex refinery processes such as hydrotreating (to reduce the sulfur content in the diesel), reforming (to increase the octane of the naphtha and convert it to gasoline) or cracking (to convert heavier residual products into diesel and gasoline).

The crude oil before entering the crude fractionator tower is partially vaporized by passing it through a crude oil heater (EPN H-400). The crude oil heater is fired by off-gas and natural gas. The partially vaporized crude is then routed to the base of the crude fractionator tower where it begins to rise and cool as they pass through the fractionating trays and the unvaporized liquid collects in the bottom section of the tower. The unvaporized liquid or residual fuel oil (ATB- atmospheric tank bottoms) is pumped to two (2) 25,000 bbl vertical fixed roof heated tanks (EPN TK56 and TK57). This modular refinery is expected to produce approximately 23% of residuals/ATB. As the vapor cools, hydrocarbons with different boiling temperatures precipitate out of the vapor. The hydrocarbons with the highest boiling points which are made up the longest chains of hydrogen and carbon atoms precipitate out first near the bottom of the tower. The hydrocarbons with the top of the tower. The uncondensed light hydrocarbon vapors and inert gases (off-gas) are released from the top of crude fractionator tower. This modular refinery is expected to produce about 3% of off-gas; which is used as fuel for crude oil heater (EPN H-400). In case of upset or unplanned maintenance of the crude fractionator tower the off-gas will be routed to the vapor combustor unit (EPN VCU) before being released to the atmosphere.


Precipitating at the top of the crude fractionator tower are the liquid petroleum gases consisting of hydrocarbon molecules containing three to four carbon atoms. The next produced in the crude fractionator tower are naphthas with 4 to 12 hydrocarbon molecules; which are a primary feedstock for gasoline. This modular refinery is expected to produce approximately 35% of naphtha which is stored in two (2) 25,000 bbl internal floating roof tanks (EPN TK52 & TK53). The next product to separate from the crude fractionator tower is diesel; hydrocarbons with 15 to 18 carbon atoms per molecule. The diesel production split is expected to be 39% and will be stored in two (2) 30,000 bbl vertical fixed roof tanks (EPN TK54 and TK55). In order to provide operational flexibility, MMEX has assumed additional 20% production of naphtha (42%), diesel (45%), and residual/ATB (28%).


The products from the refinery will be loaded out of the facility via truck or railcar. Diesel will shipped out of the refinery via trucks and naphtha and residual/ATB will shipped out via railcars. The naphtha loading emissions (EPN LOAD1) are controlled using a vapor combustor unit (EPN VCU) before being released to the atmosphere.

The scheduled maintenance startup and shutdown (MSS) emissions (EPN MSS) include internal roof and fixed roof storage tank cleaning and low emitting MSS activities. The storage tank cleaning MSS emissions are controlled using a portable flare (EPN MSS-FLR) before being released to the atmosphere.

The process wastewater generated at the facility will be first treated in oil/water separator (OWS). The emissions from OWS (EPN WWTRT) will controlled using carbon adsorption system (CAS). The separated slop oil will be stored in a 2,000-bbl internal floating roof slop oil tank (EPN TK59). The separated water from OWS along with the storm water run-off will be stored in an evaporation pond (EPN EVAPND).

The modular refinery will have one 670 hp diesel fuel powered emergency generator engine (EPN EG-1) and one 300 hp diesel fuel fire water pump engine (EPN P-676B). There will be a 210-bbl diesel fuel tank (EPN TK58) to store diesel for fueling the emergency generator and/or fire pump engine.

5. SUMMARY OF EMISSIONS

EMISSIONS SUMMARY MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

-	pecific VOC	vo	C	Ν	0 _x	C	0	PM	[₁₀	PN	1 _{2.5}	SO) ₂	H	AP
	or Other Pollutants	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy
H-400 /CDU Heater		0.21	0.92	3.82	16.75	3.21	14.07	0.29	1.27	0.29	1.27	1.22	5.36	0.07	0.32
D-950 /Steam Boiler		0.02	0.09	0.39	1.72	0.33	1.44	0.03	0.13	0.03	0.13	0.13	0.55	< 0.01	0.03
EG-1 /Emergency Generator		1.12	0.11	3.29	0.33	3.86	0.39	0.22	0.02	0.22	0.02	< 0.01	< 0.01	< 0.01	< 0.01
P-676B /Fire Water Pump Engine		0.50	0.05	1.47	0.15	1.73	0.17	0.10	< 0.01	0.10	< 0.01	0.62	0.06	< 0.01	< 0.01
FUG /Fugitives		0.71	3.10											0.22	0.98
FUGDUST /Fugitive Dust								0.49	2.13	0.05	0.21				
LOAD1 /Loading		2.31	1.14												
LOAD2 /Loading		0.53	1.16												
LOAD3 /Loading		0.53	1.16												
LOAD4 /Loading		0.44	0.16												
TK50 /Crude Oil Tank		0.65	1.78												
TK51 /Crude Oil Tank		0.65	1.78												
TK52 /Naphtha Tank		0.74	2.60												
TK53 /Naphtha Tank		0.74	2.60												
TK54 /Diesel Tank		1.00	0.60												
TK55 /Diesel Tank		1.00	0.60												
TK56 /Residual/ATB Tank		0.12	0.08												
TK57 /Residual/ATB Tank		0.12	0.08												
TK58 /Diesel Fuel Tank		0.07	< 0.01												
TK59 /Slop Tank		0.51	0.26												
WWTRT /Oily Water Treatment		0.04	0.20												
EVAPND /Evaporation Pond		0.37	1.62											0.03	0.13
VCU /Vapor Combustion Unit		< 0.01	< 0.01	0.47	0.26	0.94	0.52					< 0.01	< 0.01	< 0.01	<0.01
MSS-FLR /MSS Flaring Emissions		< 0.01	< 0.01	0.45	0.08	0.90	0.15					< 0.01	< 0.01	< 0.01	< 0.01
MSS /MSS		81.56	1.26					0.07	< 0.01	< 0.01	< 0.01			13.39	0.03
SITE-WIDE TOTAL EMISS	IONS (TPY):		20.19		19.28		16.74		3.57		1.65		5.97		1.49
Maximum Operating Schedule:]	Hours/Day	24		Days/Week	7	I	Weeks/Year	52]	Hours/Year	8760			

6. EMISSIONS DATA AND CALCULATIONS

30 TAC 106.261/262 EMISSION LIMITS EVALUATION MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY

Speciated Compound	Lin (lb/hr)	nit ¹ Basis	FUG (lb/hr)	LOAD1 (lb/hr)	LOAD2 (lb/hr)	LOAD3 (lb/hr)	LOAD4 (lb/hr)	Total (lb/hr)	Under Limit? (Y/N)
Crude Oil	6	а	0.16					0.16	Y
Refinery Petroleum Fractions	6	а	0.35	2.31	0.53	0.53	0.44	4.17	Y
Propane	6	а	0.04					0.04	Y
Isobutane	(0.02					0.15	v
n-Butane	6	а	0.13					0.15	Ŷ
	Total VOC	Total VOC Emissions		2.31	0.53	0.53	0.44	4.52	

¹ Limit values based on the following: a 30 TAC 106.261(a)(2)

Speciated		nit ¹	FUG	LOAD1	LOAD2	LOAD3	LOAD4	Total	Under Limit?
Compound	(tpy)	Basis	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(Y/N)
Crude Oil	10	а	0.70					0.70	Y
Refinery Petroleum Fractions	10	а	1.54	1.14	1.	16	0.16	4.00	Y
Propane	10	а	0.18					0.18	Y
Isobutane	10		0.10					0.66	v
n-Butane	10	а	0.56					0.00	I
	Total VOC Emissions		3.08	1.14	1.16	0.00	0.16	5.54	

¹ Limit values based on the following: a 30 TAC 106.261(a)(2)

HEATER AND BOILER EMISSIONS DATA MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

EPN	UNIT	HEAT RATE (MMBtu/hr)	RUNTIME (hr/yr)	AP42 FUEL HEAT VALUE (Btu/scf)
H-400	CDU Heater	39.00	8,760	1,020
D-950	Steam Boiler	4.00	8,760	1,020

MAXIMUM HOURLY EMISSIONS						ANNUAL EMISSIONS				
EPN	PM/PM ₁₀ /PM _{2.5} (lb/hr)	NO _x (lb/hr)	CO (lb/hr)	SO ₂ (lb/hr)	VOC (lb/hr)	PM/PM ₁₀ /PM _{2.5} (tpy)	NO _x (tpy)	CO (tpy)	SO ₂ (tpy)	VOC (tpy)
H-400	0.29	3.82	3.21	1.22	0.21	1.27	16.75	14.07	5.36	0.92
D-950	0.03	0.39	0.33	0.13	0.02	0.13	1.72	1.44	0.55	0.09

Emission Factors ¹ (<100 MMBtu/hr Heat Input)								
(lb/MMscf)								
PM/PM ₁₀ /PM _{2.5}	NO _x	СО	SO ₂ ²	VOC				
7.6 100 84 32 5.5								

¹ Emission factors based on AP-42 Section 1.4 Tables 1.4-1 & 1.4-2.

 $^2\,$ The SO_2 emission factors based on AP-42 Section 1.4 Table 1.4-2 is multiplied by (106,666 gr/MMscf / 2,000 gr/MMscf) to represent the site-specific sulfur content of 160 ppmV.

	Emission Factor ¹	H-40	0	D-950		
Pollutant	(lb/MMscf)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
2-Methylnaphthalene	2.40E-05	9.18E-07	4.02E-06	9.41E-08	4.12E-07	
3-Methylchloranthrene	1.80E-06	6.88E-08	3.01E-07	7.06E-09	3.09E-08	
7,12-						
Dimethylbenz(a)anthrac		6.12E-07	2.68E-06	6.27E-08	2.75E-07	
ene	1.60E-05					
Acenaphthene	1.80E-06	6.88E-08	3.01E-07	7.06E-09	3.09E-08	
Acenaphthylene	1.80E-06	6.88E-08	3.01E-07	7.06E-09	3.09E-08	
Anthracene	2.40E-06	9.18E-08	4.02E-07	9.41E-09	4.12E-08	
Benz(a)anthracene	1.80E-06	6.88E-08	3.01E-07	7.06E-09	3.09E-08	
Benzene	2.10E-03	8.03E-05	3.52E-04	8.24E-06	3.61E-05	
Benzo(a)pyrene	1.20E-06	4.59E-08	2.01E-07	4.71E-09	2.06E-08	
Benzo(b)fluoranthene	1.80E-06	6.88E-08	3.01E-07	7.06E-09	3.09E-08	
Benzo(g,h,i)perylene	1.20E-06	4.59E-08	2.01E-07	4.71E-09	2.06E-08	
Benzo(k)fluoranthene	1.80E-06	6.88E-08	3.01E-07	7.06E-09	3.09E-08	
Chrysene	1.80E-06	6.88E-08	3.01E-07	7.06E-09	3.09E-08	
Dibenzo(a,h)anthracene	1.20E-06	4.59E-08	2.01E-07	4.71E-09	2.06E-08	
Dichlorobenzene	1.20E-03	4.59E-05	2.01E-04	4.71E-06	2.06E-05	
Fluoranthene	3.00E-06	1.15E-07	5.02E-07	1.18E-08	5.15E-08	
Fluorene	2.80E-06	1.07E-07	4.69E-07	1.10E-08	4.81E-08	
Formaldehyde	7.50E-02	2.87E-03	1.26E-02	2.94E-04	1.29E-03	
Hexane	1.80E+00	6.88E-02	3.01E-01	7.06E-03	3.09E-02	
Indeno(1,2,3-cd)pyrene	1.80E-06	6.88E-08	3.01E-07	7.06E-09	3.09E-08	
Naphthalene	6.10E-04	2.33E-05	1.02E-04	2.39E-06	1.05E-05	
Phenanathrene	1.70E-05	6.50E-07	2.85E-06	6.67E-08	2.92E-07	
Pyrene	5.00E-06	1.91E-07	8.37E-07	1.96E-08	8.59E-08	
Toluene	3.40E-03	1.30E-04	5.69E-04	1.33E-05	5.84E-05	
Arsenic	2.00E-04	7.65E-06	3.35E-05	7.84E-07	3.44E-06	
Beryllium	1.20E-05	4.59E-07	2.01E-06	4.71E-08	2.06E-07	
Cadmium	1.10E-03	4.21E-05	1.84E-04	4.31E-06	1.89E-05	
Chromium	1.40E-03	5.35E-05	2.34E-04	5.49E-06	2.40E-05	
Cobalt	8.40E-05	3.21E-06	1.41E-05	3.29E-07	1.44E-06	
Manganese	3.80E-04	1.45E-05	6.36E-05	1.49E-06	6.53E-06	
Mercury	2.60E-04	9.94E-06	4.35E-05	1.02E-06	4.47E-06	
Nickel	2.10E-03	8.03E-05	3.52E-04	8.24E-06	3.61E-05	
Selenium	2.40E-05	9.18E-07	4.02E-06	9.41E-08	4.12E-07	
	Total	7.22E-02	3.16E-01	7.40E-03	3.24E-02	

¹ Emission Factors from AP-42, Section 1.4, Table 1.4-3 and Table 1.4-4

EMERGENCY GENERATOR DIESEL ENGINE EMISSIONS CALCULATIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

		Site rating	Hours of Operation	Maximum Potential Hourly Emissions ² (lb/hr)				Maximum Potential Annual Emissions ³ (tpy)					
EPN	Description ¹	(hp)	(hr/yr)	NOx	CO	VOC	PM/PM ₁₀ /PM _{2.5}	SO ₂	NO _X	CO	VOC	PM/PM ₁₀ /PM _{2.5}	SO ₂
EG-1	Emergency Generator	670	200	3.29	3.86	1.12	0.22	0.01	0.33	0.39	0.11	0.02	0.00
			Totals	3.29 3.86 1.12 0.22 0.01				0.33	0.39	0.11 0.02 0.00			

¹ EPN EG-1 is a compression ignition engine.

² Maximum Potential Hourly Emissions (lb/hr) = Site Rating (hp) x Emission Factor (lb/hp-hr)									
Example NO _x Hourly Emission Rate (lb/hr) =	670 hp	0.005 lb	=	3.29 lb					
		hp-hr		hr					
Image: https://www.communication.communi									
Example NO _x Annual Emission Rate (tpy) =	3.29 lb	200 hr	1 ton	=	0.33 ton				
	hr	yr	2,000 lb		yr				

Criteria Pollutant Er	nission Factors EG-1
Pollutant	Emission Factor ¹ (lb/hp-hr)
NO _x ²	0.0049
CO	0.0058
VOC ³	0.0017
PM/PM ₁₀ /PM _{2.5} ⁴	0.0003
SO ₂ ⁵	0.00001

¹ Emission factors obtained from 40 CFR 89.112, Table 1 for a Tier 3 engine with a power rating of between 450 and 560 kW. SO₂ factor obtained from AP-42 Section 3.4 for Stationary Combustion Engines, Table 3.4-1 for Diesel Fuel.

² NO_x +NMHC factors are ratiod 74.6% NO_x and 25.4% NMHC based on the linear relationship of NO_x to NMHC from Table 1 of Subpart IIII, Table 1 from 40 CFR 89.112, to Tables 4, 5, and 6 from 40 CFR 1039.102.

³ VOC is assumed to be the total of the TOC factors.

 $^{\rm 4}$ Assumed total PM and $\rm PM_{2.5}$ is equal to $\rm PM_{10}.$

 $^5\,{\rm SO}_2$ is based on the total weight percent of sulfur in diesel fuel equal to 15 ppmw.

HAP Combustion Emission Calculations

Constituent	Emission Factors ¹	Emission Factors ²	EG-1		
	(lb/MMBtu)	(lb/hp-hr)	(lb/hr)	(tpy)	
Benzene	7.76E-04	5.43E-06	3.64E-03	3.64E-04	
Toluene	2.81E-04	1.97E-06	1.32E-03	1.32E-04	
Xylene	1.93E-04	1.35E-06	9.05E-04	9.05E-05	
Formaldehyde	7.89E-05	5.52E-07	3.70E-04	3.70E-05	
Acetaldehyde	2.52E-05	1.76E-07	1.18E-04	1.18E-05	
Acrolein	7.88E-06	5.52E-08	3.70E-05	3.70E-06	
Naphthalene	1.30E-04	9.10E-07	6.10E-04	6.10E-05	
Acenaphthene	4.68E-06	3.28E-08	2.19E-05	2.19E-06	
Acenaphthylene	9.23E-06	6.46E-08	4.33E-05	4.33E-06	
Fluorene	1.28E-05	8.96E-08	6.00E-05	6.00E-06	
Phenanthrene	4.08E-05	2.86E-07	1.91E-04	1.91E-05	
Anthracene	1.23E-06	8.61E-09	5.77E-06	5.77E-07	
Fluoranthene	4.03E-06	2.82E-08	1.89E-05	1.89E-06	
Pyrene	3.71E-06	2.60E-08	1.74E-05	1.74E-06	
Benzo(a)anthracene	6.22E-07	4.35E-09	2.92E-06	2.92E-07	
Chrysene	1.53E-06	1.07E-08	7.18E-06	7.18E-07	
Benzo(b)fluoranthene	1.11E-06	7.77E-09	5.21E-06	5.21E-07	
Benzo(k)fluoranthene	2.18E-07	1.53E-09	1.02E-06	1.02E-07	
Benzo(a)pyrene	2.57E-07	1.80E-09	1.21E-06	1.21E-07	
Ineno(1,2,3-cd)pyrene	4.14E-07	2.90E-09	1.94E-06	1.94E-07	
Dibenz(a,h)anthracene	3.46E-07	2.42E-09	1.62E-06	1.62E-07	
Benzo(g,h,l)perylene	5.56E-07	3.89E-09	2.61E-06	2.61E-07	
		Total	7.38E-03	7.38E-04	

¹ Emission Factors from AP-42, Section 3.4, Tables 3.4-3 and 3.4-4 (10/96). Some speciated constituents are not identified as HAP within this AP-42 Section; however, these constituents have been identified as HAP in other AP-42 Sections, such as AP-42, Section 3.2.

² An average brake-specific fuel consumption of 7,000 Btu/hp-hr is used to convert from lb/MMBtu to lb/hp-hr per reference (a) of Table 3.4-1 within AP-42, Section 3.4.

FIRE WATER PUMP DIESEL ENGINE EMISSIONS CALCULATIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

		Site rating	Hours of Operation	Maximum Potential Hourly Emissions ² (lb/hr)				Maximum Potential Annual Emissions ³ (tpy)					
EPN	Description ¹	(hp)	(hr/yr)	NOx	CO	VOC	PM/PM ₁₀ /PM _{2.5}	SO ₂	NOx	CO	VOC	PM/PM ₁₀ /PM _{2.5}	SO ₂
P-676B	Fire Water Pump Engine	300	200	1.47	1.73	0.50	0.10	0.62	0.15	0.17	0.05	0.01	0.06
	Totals					0.50	0.10	0.62	0.15	0.17	0.05	0.01	0.06

¹ EPN P-676B is a compression ignition engine.

² Maximum Potential Hourly Emissions (lb/hr) = Site Rating (hp) x Emission Factor (lb/hp-hr)										
Example NO _x Hourly Emission Rate (lb/hr) =	300 hp	0.005 lb	=	1.47 lb						
		hp-hr		hr						
³ Maximum Potential Annual Emission (tpy) = Hourly Emission Rate (lb/hr) x Hours	³ Maximum Potential Annual Emission (tpy) = Hourly Emission Rate (lb/hr) x Hours of Operation (hr/yr) / (2,000 lb/ton)									
Example NO _x Annual Emission Rate (tpy) =	1.47 lb	200 hr	1 ton	=	0.15 ton					
	hr	yr	2,000 lb		yr					

Criteria Pollutant Emission Factors							
	P-676B						
Pollutant	Emission Factor ¹ (lb/hp-hr)						
NO _x ²	0.0049						
СО	0.0058						
VOC ³	0.0017						
PM/PM ₁₀ /PM _{2.5} ⁴	0.0003						
SO ₂	0.0021						

+ Emission factors obtained from 40 CFR 60 Subpart IIII, Table 4 for an engine with a power rating of between 130 and 225 kW. S02 factor obtained from AP-42 Section 3.3 for Stationary Combustion Engines, Table 3.3-1 for Diesel Fuel.

² NO_x +NMHC factors are ratiod 74.6% NO_x and 25.4% NMHC based on the linear relationship of NO_x to NMHC from Table 1 of Subpart IIII, Table 1 from 40 CFR 89.112, to Tables 4, 5, and 6 from 40 CFR 1039.102.

 3 VOC is assumed to be the total of the TOC factors.

 $^{\rm 4}$ Assumed total PM and $\rm PM_{2.5}$ is equal to $\rm PM_{10}.$

HAP Combustion Emission Calculations

Constituent	Emission Factors ¹	Emission Factors ²	P-62	76B
	(lb/MMBtu)	(lb/hp-hr)	(lb/hr)	(tpy)
Benzene	9.33E-04	6.53E-06	1.96E-03	1.96E-04
Toluene	4.09E-04	2.86E-06	8.59E-04	8.59E-05
Xylene	2.85E-04	2.00E-06	5.99E-04	5.99E-05
1,3-Butadiene	3.91E-05	2.74E-07	8.21E-05	8.21E-06
Formaldehyde	1.18E-03	8.26E-06	2.48E-03	2.48E-04
Acetaldehyde	7.67E-04	5.37E-06	1.61E-03	1.61E-04
Acrolein	9.25E-05	6.48E-07	1.94E-04	1.94E-05
Naphthalene	8.48E-05	5.94E-07	1.78E-04	1.78E-05
Acenaphthene	5.06E-06	3.54E-08	1.06E-05	1.06E-06
Acenaphthylene	1.42E-06	9.94E-09	2.98E-06	2.98E-07
Fluorene	2.92E-05	2.04E-07	6.13E-05	6.13E-06
Phenanthrene	2.94E-05	2.06E-07	6.17E-05	6.17E-06
Anthracene	1.87E-06	1.31E-08	3.93E-06	3.93E-07
Fluoranthene	7.61E-06	5.33E-08	1.60E-05	1.60E-06
Pyrene	4.78E-06	3.35E-08	1.00E-05	1.00E-06
Benzo(a)anthracene	1.68E-06	1.18E-08	3.53E-06	3.53E-07
Chrysene	3.53E-07	2.47E-09	7.41E-07	7.41E-08
Benzo(b)fluoranthene	9.91E-08	6.94E-10	2.08E-07	2.08E-08
Benzo(k)fluoranthene	1.55E-07	1.09E-09	3.26E-07	3.26E-08
Benzo(a)pyrene	1.88E-07	1.32E-09	3.95E-07	3.95E-08
Ineno(1,2,3-cd)pyrene	3.75E-07	2.63E-09	7.88E-07	7.88E-08
Dibenz(a,h)anthracene	5.83E-07	4.08E-09	1.22E-06	1.22E-07
Benzo(g,h,l)perylene	4.89E-07	3.42E-09	1.03E-06	1.03E-07
		Total	8.13E-03	8.13E-04

¹ Emission Factors from AP-42, Section 3.3, Tables 3.3-3 (10/96). Some speciated constituents are not identified as HAP within this AP-42 Section; however, these constituents have been identified as HAP in other AP-42 Sections, such as AP-42, Section 3.2.

² An average brake-specific fuel consumption of 7,000 Btu/hp-hr is used to convert from lb/MMBtu to lb/hp-hr per reference (a) of Table 3.4-1 within AP-42, Section 3.3.

FUGITIVE EMISSIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

COMPONENT	FUGITIVE COUNT ¹	TCEQ ² FACTOR (lb/hr-src)	REDUCTION ALLOWED FOR LDAR	% VOC IN STREAM	TOTAL VOC EMISSIONS (lb/hr)	TOTAL VOC EMISSIONS (tpy)	% H ₂ S ³ IN STREAM	TOTAL H2S EMISSIONS (lb/hr)	TOTAL H ₂ S EMISSIONS (tpy)	% HAP IN STREAM	TOTAL HAP EMISSIONS (lb/hr)	TOTAL HAP EMISSIONS (tpy)	% BENZENE IN STREAM	TOTAL BENZENE EMISSIONS (lb/hr)	TOTAL BENZENE EMISSIONS (tpy)
OFF-GAS (gas)															
VALVES	90	0.059	97%	100%	0.1593	0.6977	0.00%	0.000	0.0000	0.00%	0.0000	0.0000	0.00%	0.0000	0.0000
FLANGES/CONNECTORS	250	0.00055	97%	100%	0.0041	0.0181	0.00%	0.000	0.0000	0.00%	0.0000	0.0000	0.00%	0.0000	0.0000
RELIEF VALVES	3	0.35	97%	100%	0.0315	0.1380	0.00%	0.000	0.0000	0.00%	0.0000	0.0000	0.00%	0.0000	0.0000
NAPHTHA (light liquid)															
VALVES	140	0.024	97%	100%	0.1008	0.4415	0.00%	0.000	0.0000	83.75%	0.0844	0.3697	5.23%	0.0053	0.0231
FLANGES/CONNECTORS	430	0.00055	97%	100%	0.0071	0.0311	0.00%	0.000	0.0000	83.75%	0.0059	0.0260	5.23%	0.0004	0.0016
PUMP SEALS	7	0.251	93%	100%	0.1230	0.5387	0.00%	0.000	0.0000	83.75%	0.1030	0.4511	5.23%	0.0064	0.0282
RELIEF VALVES	1	0.35	97%	100%	0.0105	0.0460	0.00%	0.000	0.0000	83.75%	0.0088	0.0385	5.23%	0.0005	0.0024
CRUDE OIL (light liquid)															
VALVES	70	0.024	97%	100%	0.0504	0.2208	0.20%	0.000	0.0004	10.00%	0.0050	0.0221	1.00%	0.0005	0.0022
FLANGES/CONNECTORS	220	0.00055	97%	100%	0.0036	0.0159	0.20%	0.000	0.0000	10.00%	0.0004	0.0016	1.00%	0.0000	0.0002
PUMP SEALS	6	0.251	93%	100%	0.1054	0.4617	0.20%	0.000	0.0009	10.00%	0.0105	0.0462	1.00%	0.0011	0.0046
DIESEL (heavy liquid)															
VALVES	140	0.00051	97%	100%	0.0021	0.0094	0.00%	0.000	0.0000	9.00%	0.0002	0.0008	0.00%	0.0000	0.0000
FLANGES/CONNECTORS	360	0.00055	97%	100%	0.0059	0.0260	0.00%	0.000	0.0000	9.00%	0.0005	0.0023	0.00%	0.0000	0.0000
PUMP SEALS	7	0.046	93%	100%	0.0225	0.0987	0.00%	0.000	0.0000	9.00%	0.0020	0.0089	0.00%	0.0000	0.0000
RELIEF VALVES	3	0.35	97%	100%	0.0315	0.1380	0.00%	0.000	0.0000	9.00%	0.0028	0.0124	0.00%	0.0000	0.0000
RESIDUAL (heavy liquid)															
VALVES	150	0.00051	97%	100%	0.0023	0.0101	0.00%	0.000	0.0000	0.00%	0.0000	0.0000	0.00%	0.0000	0.0000
FLANGES/CONNECTORS	390	0.00055	97%	100%	0.0064	0.0282	0.00%	0.000	0.0000	0.00%	0.0000	0.0000	0.00%	0.0000	0.0000
PUMP SEALS	6	0.046	93%	100%	0.0193	0.0846	0.00%	0.000	0.0000	0.00%	0.0000	0.0000	0.00%	0.0000	0.0000
RELIEF VALVES	2	0.35	97%	100%	0.0210	0.0920	0.00%	0.000	0.0000	0.00%	0.0000	0.0000	0.00%	0.0000	0.0000
				TOTAL	0.707	3.097		0.000	0.001		0.224	0.980		0.014	0.062

¹ Fugitive emission source counts were calculated based on the types of field equipment at the facility and a general source count per equipment.

² Factors are from TCEQ Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives Facility/Compound Specific Fugitive Emission Factors - Refinery.

³ Naptha, diesel, and residual stream compositions based on representative safety data sheets (SDS) from US Oil Refining Company, Citgo, and Valero respectively.

PRODUCT LOADING EMISSIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

 $L_{L} = 12.46* \frac{SPM}{T}$

Equation¹:

Variables¹:

L_L - Loading Loss (lbs/1000 gal loaded) S - Saturation Factor (From Table 5.2-1 of AP-42, Section 5.2)

P - True Vapor Pressure of Loaded Liquid (psia)

M - Molecular Weight of Vapor (lb/lb mol)

T- Temperature of Bulk Liquid (°R = [°F + 460])

EPN	Product	Loading Method	S ²	P _{max} ³ (psia)	M ³ (lb/lbmol)	T ³ (°R)	L _L (lbs/1000 gal)	Max Hourly Throughput ⁴ (gal/hr)	VOC Content ⁵ (wt %)	Uncontrolled Hourly Emissions (lb/hr)	% Capture ⁶	% Control ⁶	Controlled Hourly VOC Emissions ⁶ (lb/hr)	Fugitive Hourly VOC Emissions ⁸ (lb/hr)
LOAD1	Naphtha	Submerged	0.60	11.00	52	554.67	7.71	60,000	100	462.58	100.0	99.5	2.31	
LOAD2	Diesel	Submerged	0.60	0.02	130	554.67	0.03	16,000	100	0.53	0.0	0		0.53
LOAD3	Diesel	Submerged	0.60	0.02	130	554.67	0.03	16,000	100	0.53	0.0	0		0.53
LOAD4	Residual/ATB	Splash	1.45	0.00150	190	709.67	0.01	60,000	100	0.44	0.0	0		0.44

EPN		Loading Method	S ²	P _{max} ⁷ (psia)	M ⁷ (lb/lbmol)	T ⁷ (°R)	L _L (lbs/1000 gal)	Annual Throughput (gal/yr)	VOC Content ⁵ (wt %)	Uncontrolled Annual Emissions (tpy)	% Capture ⁶	% Control ⁶	Controlled Annual VOC Emissions ⁶ (tpy)	Fugitive Annual VOC Emissions ⁸ (tpy)
LOAD1	Naphtha	Submerged	0.60	10.00	52	549.67	7.07	64,386,000	100	227.68	100.0	99.5	1.14	
LOAD2	Diesel	Submerged	0.60	0.02	130	549.67	0.03	68,985,000	100	1.16	0.0	0		1.16
LOAD3	Diesel	Submerged	0.60	0.02	130	549.67	0.03	00,903,000	100	1.10	0.0	0		1.10
LOAD4	Residual/ATB	Splash	1.45	0.0015	190	709.67	0.01	42,924,000	100	0.16	0.0	0		0.16

¹ Loading Loss Equation and Variables are from AP-42, Section 5.2, Transportation and Marketing of Petroleum Liquids.

² The S-factor for naphtha and diesel is based on submerged loading in dedicated normal service. The S-factor for residual/ATB is based on splash loading in dedicated normal service.

³ Vapor pressure and molecular weight obtained from TANKS 4.09d runs. The maximum true vapor pressure is used to calculate the hourly emission rate and is based on maximum temperature of 95°F.

⁴ The maximum hourly throughput for naphtha and residual/ATB is based on the maximum capacity of a railcar (30,000 gallons) and assumes 2 railcars per hour. The maximum hourly throughput for diesel is based on the maximum capacity of a tanker truck (8,000 gallons) and assumes 2 tanker trucks loaded per hour per loading bay.

⁵ The VOC content conservatively assumes 100% product.

⁶ Controlled loading emissions are based on normal operations which account for a capture efficiency of 100% for trucks passing the NSPS-level annual tests per AP-42 Section 5.2. The Vapor Combustor Unit (VCU) has a DRE of 99.5%. The captured vapor/emissions are sent to and controlled by the VCU during normal operations but are represented under EPN LOAD1.

⁷ Vapor pressure, molecular weight, and average annual temperature obtained from TANKS 4.09d runs.

⁸ Fugitive loading emissions are based on normal operations which account for 0% of uncontrolled emissions being released fugitively due to capture efficiency of 100% and are represented under EPN LOAD1.

STORAGE TANK EMISSIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

								Uncon		Controlled		
EPN	FIN	Tank Description	Tank Size	Tank Type	Diameter (ft)	Height (ft)	Annual Throughput (gal)	VOC Emissions (lb/hr) ¹	VOC Emissions (tpy) ¹	Control Efficiency	VOC Emissions (tpy) ¹	VOC Emissions (tpy) ¹
TK50	TK50	Crude Oil Tank	75,000 bbl	Internal Floating Roof	95	60	91,980,000	0.65	1.78	0.00%	0.65	1.78
TK51	TK51	Crude Oil Tank	75,000 bbl	Internal Floating Roof	95	60	91,980,000	0.65	1.78	0.00%	0.65	1.78
TK52	TK52	Naphtha Tank	25,000 bbl	Internal Floating Roof	67	40	32,193,000	0.74	2.60	0.00%	0.74	2.60
TK53	TK53	Naphtha Tank	25,000 bbl	Internal Floating Roof	67	40	32,193,000	0.74	2.60	0.00%	0.74	2.60
TK54	TK54	Diesel Tank	30,000 bbl	Vertical Fixed Cone Roof	75	40	34,492,500	1.00	0.60	0.00%	1.00	0.60
TK55	TK55	Diesel Tank	30,000 bbl	Vertical Fixed Cone Roof	75	40	34,492,500	1.00	0.60	0.00%	1.00	0.60
TK56	TK56	Residual/ATB Tank	25,000 bbl	Vertical Fixed Cone Roof	67	40	21,462,000	0.12	0.08	0.00%	0.12	0.08
TK57	TK57	Residual/ATB Tank	25,000 bbl	Vertical Fixed Cone Roof	67	40	21,462,000	0.12	0.08	0.00%	0.12	0.08
TK58	TK58	Diesel Fuel Tank	210 bbl	Vertical Fixed Cone Roof	10	15	18,396	0.07	< 0.01	0.00%	0.07	< 0.01
TK59 ²	TK59 ²	Slop Tank	950 bbl	Internal Floating Roof	25.0	24.0	5,040,000	0.51	0.26	0.00%	0.51	0.26

¹ Emissions for EPNs TK50-TK55 and TK58-TK59 are calculated using U.S. EPA TANKS 4.09d. Emissions for EPNs TK56-TK57 are calculated using TanksESP.

² Slop Tank emissions are controlled using a carbon adsoprtion system with efficiency of 95%.

Internal Floating Roof Storage Tanks Losses

EPN	FIN	Tank Description	Rim Seal Losses (lb/yr)	Withdrawal Losses (lb/yr)	Deck Fitting Losses (lb/yr)	Deck Seam Losses (lb/yr)
TK50	TK50	Crude Oil Tank	136.06	967.01	2451.96	0.00
TK51	TK51	Crude Oil Tank	136.06	967.01	2451.96	0.00
TK52	TK52	Naphtha Tank	319.84	91.57	4783.29	0.00
TK53	TK53	Naphtha Tank	319.84	91.57	4783.29	0.00
TK59	TK59	Slop Tank	13.95	165.19	339.93	0.00

Vertical Fixed Cone Roof Storage Tanks Annual Losses

EPN	FIN	Tank Description	Working Losses (lb/yr)	Breathing Losses (lb/yr)
TK54	TK54	Diesel Tank	888.48	319.46
TK55	TK55	Diesel Tank	888.48	319.46
TK56	TK56	Residual/ATB Tank	117.00	44.00
TK57	TK57	Residual/ATB Tank	117.00	44.00
TK58	TK58	Diesel Fuel Tank	0.47	1.95

Vertical Fixed Cone Roof Storage Tanks Hourly Losses

					Vapor Pressure at	Vapor	Hourly Working
			Hourly	Maximum Daily Liquid	Maximum Liquid	Molecular	and Breathing
			Throughput	Surface Temperature	Surface Temperature	Weight	Losses 1
EPN	FIN	Tank Description	(gal/hr)	(Rankine)	(psia)	(lb/lb-mol)	(lb/hr)
TK54	TK54	Diesel Tank	18000	554.67	0.019	130	1.00
TK55	TK55	Diesel Tank	18000	554.67	0.019	130	1.00
TK58	TK58	Diesel Fuel Tank	1200	554.67	0.019	130	0.07

¹ Hourly emissions are calculated based on TCEQ guidance, Estimating Short Term Emission Rates from Tanks (APDG 6250). Methodology is detailed below.

Where
$$L_{MX} = \frac{M_V P_{VA}}{RT} FR_M$$

L_{MAX}= Maximum short term emission rate, lbs/hour

P_{VA}= VP at max daily liquid surface temperature, psia

R= Ideal gas constant, (psia gal)/(lb-mol °R)

T= Max daily liquid surface temperature, °R

VAPOR COMBUSTOR EMISSIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

EPN

Total Emissions from VCU¹

Pollutant	(lb/hr)	(tpy)
NO _x	0.473	0.260
CO	0.944	0.518
VOC	9.57E-05	4.19E-04
SO ₂	1.66E-04	7.25E-04
Formaldehyde	3.75E-06	1.64E-05

VCU

¹ Total emissions from the vapor combustor includes emissions from loading, and combustion of fuel gas. The VOC and HAP emissions from loading are represented under EPN LOAD1.

Calculations of Naphtha Loading Emissions

	Naphtha		
Parameters ¹	Hourly Value	Annual Value	Unit
Vapor MW	52	52	lb/lb-mol
Gross heating value	1000.00	1000.00	Btu/scf
Vapor volumetric flow	3376.80		scfh
Vapor volumetric flow		3324200.891	SCFY
VOC Destruction Efficiency ²	99.	%	

		Loading		
Pollutant	Emission Factor (lb/MMBtu)	Hourly Emissions (lb/hr)	Annual Emissions (tpy)	
NO _x ^{3, 4}	0.138	0.466	0.2294	
CO ^{3, 4}	0.2755	0.930	0.458	

¹ Vapor MW, heating values, and vapor volumetric flow are obtained from the naphtha liquid stream and loading calculations.

² VOC Destruction Efficiency assumed to be 99.5%.

³ Emission Factors for high-BTU streams from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (RG-109, 10/2000). Assuming the high-BTU emission factors due to cnaptha vent stream.

⁴ Emissions are calculated as (Emission Factor)*(Gross Heating Value)*(Vapor Volumetric Flow)/(1,000,000 Btu/MMBtu). Annual emission are converted to tons per year.

Calculations of Pilot Gas Combustion Emissions

VCU Information ¹			
VOC DRE ¹	99.5	%	
Fuel Gas Flow ¹	50	scfh	
Heat Content ²	1000	Btu/scf	

Pollutant	Emission Factor ^{3, 6}		Emissions (lb/hr)	Emissions (tpy)
NO _x ⁴	0.138	lb/MMBtu	0.01	0.03
CO ⁴	0.2755	lb/MMBtu	0.01	0.06
CH ₂ O ⁵	0.075	lb/MMscf	3.75E-06	1.64E-05

¹ Information based on a similar facility.

² Heat Content from fuel gas analysis.

³ Emission Factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (RG-109, 10/2000).

⁴ Emissions calculated as (Emission Factor)(Fuel Gas Heat Content)(Fuel gas Flow)(1 MMBtu/ 1,000,000 Btu). Annual emission include conversion factors to convert to tons per year.

⁵ Emissions calculated as (Emission Factor)(Fuel gas Flow)(1 MMscf/ 1,000,000 scf). Annual emission include conversion factors to convert to tons per year.

⁶ Formaldehyde emission factor is based on AP-42 Chapter 1.4 (Natural Gas Combustion, 7/1998), Table 1.4-3.

Calculations of Fuel Gas VOC Emissions

Where

M=<u>(MW)PV</u>

RT

m=mass flow rate in lb/hr MW=molecular weight in lb/lbmole P=standard pressure=14.7 psia V=flow rate in scfh R=gas constant=10.73 psia ⁻ft⁻³ lbmol^{-1.} ^oR⁻¹, and T=standard temperature=528^oR

Constituent ¹	Molecular Weight (lb/lb-mole)	Mole % ¹ (%)	Volume Flow Rate (scf/hr)	Mass Flow Rate (lb/hr)	Fuel Gas Emissions (lb/hr)	Fuel Gas Emissions (tpy)
N ₂	28.013		0.00	0.00	0.00E+00	0.00E+00
CO ₂	44.010		0.00	0.00	0.00E+00	0.00E+00
Methane	16.043		0.00E+00	0.00E+00	0.00E+00	0.00E+00
Ethane	30.070		0.00E+00	0.00E+00	0.00E+00	0.00E+00
Propane	44.097	0.200	0.10	1.14E-02	5.72E-05	2.51E-04
i-Butane	58.124	0.030	0.02	2.26E-03	1.13E-05	4.95E-05
n-Butane	58.124	0.030	0.02	2.26E-03	1.13E-05	4.95E-05
i-Pentane	72.151	0.010	5.00E-03	9.36E-04	4.68E-06	2.05E-05
n-Pentane	72.151	0.010	5.00E-03	9.36E-04	4.68E-06	2.05E-05
Hexanes +	100.204	0.010	5.00E-03	1.30E-03	6.50E-06	2.85E-05
Hydrogen Sulfide ²	34.076	0.0020	1.00E-03	8.84E-05	4.42E-07	1.94E-06
				TOTAL	9.61E-05	4.21E-04
				TOTAL VOC	9.57E-05	4.19E-04
				TOTAL HAPs	6.50E-06	2.85E-05

¹ Speciated composition is based on https://www.uniongas.com/about-us/about-natural-gas/chemical-composition-of-natural-gas. ² Assuming 20 ppm of H₂S in natural gas.

Calculations of Fuel Gas SO₂ Emissions

SO $_{\rm 2}$ is based on a material balance with 99.5% combustion efficiency.

Gas Stream	Combustion	SO ₂ ¹	SO ₂ ¹
	Efficiency Fraction	(lb/hr)	(tpy)
Fuel Gas	99.5%	1.66E-04	7.25E-04

¹ Emissions calculated are equal to (Combustion Efficiency Fraction)*(Mass Fuel Sulfur Burned)*(Mole Wt. of SO2)/(Mole Wt. of Sulfur). Annual emission are converted to tons per year.

SO2 Emission Rate	Heat Release ¹
(lb/hr)	(Btu/hr)
1.66E-04	8.78

1. Heat release calculated is equal to (0.53)*(10⁵)*(S02 lb/hr)

FUGITIVE DUST EMISSIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

EPN:	FUGDUST	
Loading Trucks		
No. of Loading Trips	25	trips/day
No. of Unloading Trips	25	trips/day
Weight of Truck	40	tons
Personal Vehicles		
No. of Trips	30	trips/day
Weight if Vehicle	2	tons
Road Length Each way	14,000 2.65	feet miles
Annual Miles Traveled	155,000	VMT/year
Average Weight of Vehicle Average Silt Content ¹	26 4.80%	tons

	PM ₃₀	PM ₁₀	PM _{2.5}
Emission Factor, (lb/VMT) ²	0.2714	0.0275	0.0028

Emissions	lb/hr	tpy
PM ₃₀	4.80	21.04
PM_{10}	0.49	2.13
PM _{2.5}	0.05	0.21

¹ Assumed average silt content of 4.8% for Sand and gravel processing from AP-42 Section 13.2.2, Table 13.2.2-1.

² Emission factor estimated using formula 1a from AP-42 Section 13.2.2.

OILY WATER TREATMENT EMISSIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

EPN:	WWTRT	
Water	77,000	gal/year
Annual Rainfall ¹	1.26	feet
Area of facility	200,000	ft^2
Volume of Rainfall	251,833	ft ³ /year
	1,884,000	gal/year
Total Volume of Water to be Treated	1,961,000	gal/year
VOC Emission Factor ²	0.2	lb/1000 gal
Emissions	lb/hr	tpy
VOC	0.04	0.20

¹ Average annual precipitation for Fort Stockton, http://www.usclimatedata.com/climate/fort-stockton/texas/united-states/ustx0473/2013/2

² VOC controlled emission factor for oil/water separator from AP-42 Section 5.1.1, Table 5.1-3. The VOC emissions will be controlled using activated carbon canisters.

EVAPORATION POND EMISSIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

EPN	EVAPND
Water 9 Modeling	g Results for Retention Pond - Lagoon

Compound Name	CAS No.	HAP ?	Modeled Throughput (l/s)	Modeled Influent Concentration (ppmw)	Modeled Emissions (g/s)	Modeled Emissions (Mg/yr)	Modeled Emissions (lb/hr)	Modeled Emissions (tpy)
2,2,4-Trimethylpentane	540-84-1	Yes	2.52	0.11	1.16E-05	3.65E-04	9.21E-05	4.02E-04
Benzene	71-43-2	Yes	2.52	4.86	1.18E-03	3.72E-02	9.37E-03	4.10E-02
Biphenyl	92-52-4	Yes	2.52	0.00	1.13E-07	3.56E-06	8.97E-07	3.92E-06
Cresols	1319-77-3	Yes	2.52	1.85	1.09E-07	3.42E-06	8.65E-07	3.77E-06
Cumene	98-82-8	Yes	2.52	0.06	6.53E-06	2.06E-04	5.18E-05	2.27E-04
Ethylbenzene	100-41-4	Yes	2.52	0.42	6.36E-05	2.00E-03	5.05E-04	2.20E-03
Hexane	110-54-3	Yes	2.52	0.23	4.78E-05	1.51E-03	3.79E-04	1.66E-03
Methyl tertiary-butyl ether	1634-04-4	Yes	2.52	4.76	1.23E-03	3.89E-02	9.76E-03	4.29E-02
Naphthalene	91-20-3	Yes	2.52	0.10	2.79E-05	8.78E-04	2.21E-04	9.68E-04
Phenol	108-95-2	Yes	2.52	3.89	3.57E-06	1.13E-04	2.83E-05	1.25E-04
Styrene	100-42-5	Yes	2.52	0.44	4.72E-04	1.49E-02	3.75E-03	1.64E-02
Toluene	108-88-3	Yes	2.52	3.89	5.41E-04	1.71E-02	4.29E-03	1.88E-02
Xylene	1330-20-7	Yes	2.52	1.60	2.90E-04	9.15E-03	2.30E-03	1.01E-02
1,3-Butadiene	106-99-0	Yes	2.52	0.01	4.31E-06	1.36E-04	3.42E-05	1.50E-04
Other VOCs (using butane)	106-97-8	No	2.52	77.78	4.27E-02	1.35E+00	3.39E-01	1.49E+00
						Fotal VOC Emissions	0.37	1.62
						Fotal HAP Emissions	0.03	0.13

SUMMARY OF MSS EMISSIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY

HOURLY E	MISSIONS										
EPN		NO _x	CO	VOC	PM	PM ₁₀	PM _{2.5}	SO ₂	Benzene	H ₂ S	Total HAPs
	Description	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
	IFR Tank Cleanings			3.86							
	IFR Tank Landings			0.47							
MSS	Fixed Tank Cleanings			4.17							
	Surface Coating			73.00	0.77	0.07	5.36E-03				13.39
	Low Emitting MSS Activities ¹			0.06							
	MSS TOTAL			81.56	0.77	0.07	5.36E-03				13.39

¹ Emissions based on default emission rates from TCEQ Oil and Gas Emissions Calculations Workbook. The default emission rates cover low emitting activities noted in PBR §106.359(b)(1)-(6). Low emitting activities include: 1) engine, compressor, and other combustion maintenance; 2) repair, adjustment, calibration, lubrication, and cleaning of site process equipment; 3) replacement of piping components, pneumatic controllers, boiler refractories, wet and dry seals, meters, instruments, analyzers, screens, and filters; 4) turbine or engine component swaps; 5) piping used to bypass a facility during maintenance; 6) planned MSS activities with the same character and quantity of emissions as those listed previously.

ANNUAL EI	MISSIONS										
EPN		NOx	CO	VOC	РМ	PM ₁₀	PM _{2.5}	SO ₂	Benzene	H ₂ S	Total HAPs
21.11	Description	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
	IFR Tank Cleanings			0.40							
	IFR Tank Landings			0.08							
MSS	Fixed Tank Cleanings			0.38							
	Surface Coating			0.15	1.54E-03	1.39E-04	1.07E-05				0.03
	Low Emitting MSS Activities ¹			0.25							
	MSS TOTAL			1.26	1.54E-03	1.39E-04	1.07E-05				0.03

¹ Emissions based on default emission rates from TCEQ Oil and Gas Emissions Calculations Workbook. The default emission rates cover low emitting activities noted in PBR §106.359(b)(1)-(6). Low emitting activities include: 1) engine, compressor, and other combustion maintenance; 2) repair, adjustment, calibration, lubrication, and cleaning of site process equipment; 3) replacement of piping components, pneumatic controllers, boiler refractories, wet and dry seals, meters, instruments, analyzers, screens, and filters; 4) turbine or engine component swaps; 5) piping used to bypass a facility during maintenance; 6) planned MSS activities with the same character and quantity of emissions as those listed previously.

Summary of MSS Emissions - IFR Tank Cleanings

Description	EPN	Hourly VOC Emissions ^{1, 2} (lb/hr)	Annual VOC Emissions ² (tpy)
Standing Idle		0.26	0.06
Vapor Space Purge		0.98	0.08
Sludge Removal		3.86	0.25
Refilling		0.12	0.02
	Total	3.9	0.4

Summary of Tanks MSS VOC Emissions

¹ It is assumed that only one of the tank cleaning operations will occur within one hour on a tank by tank basis.

 2 Associated NO_X, SO₂, and CO emissions from the combustion of the waste gas associated with these activities are presented within the control device emission calculation tables.

Tank Cleanings - Standing Idle Emissions

API Technical Report 2568, "Evaporative Loss from the Cleaning of Storage Tanks," p. 3, November 2007

IFR with Liquid Heel Standing Idle Calculations

Basis:

$h_{le} = \left(h_l + \frac{sD}{72}\right)$	 h_{le} = effective height of the stock liquid and sludge for a given stage in the tank cleaning process (ft) h_l = height of the stock liquid and sludge above the tank bottom at the tank shell for a given stage in the tank cleaning process (ft) s = slope of the tank bottom (in/ft) D = tank diameter (ft)
$h_v = h_d - h_{le}$	h_v = height of the vapor space under the floating roof for the given standing idle period (ft) h_d = height of the floating roof deck above the tank bottom at the tank shell (ft) h_{le} = height of the stock liquid and sludge above the tank bottom at the tank shell for a given stage in the tank cleaning process (ft)
$V_{v} = (h_{v})(\frac{\pi D^{2}}{4})$	V_v = volume of the vapor space under the floating roof (ft ³) h_v = height of the vapor space under the floating roof for the given standing idle period (ft) D = tank diameter (ft)
$L_{SR(max)} = 5.9D^2 h_{le} W_l$	L _{SR(max)} = maximum sludge removal loss per cleaning (lb) D = tank diameter (ft) h _{le} = the effective height of the stock liquid and sludge for the given sludge removal period (ft) W _l = stock liquid density (lb/gal)
$L_s = n_d K_E (\frac{PV_V}{RT}) M_V K_S$	$ \begin{split} L_{S} &= \text{standing idle loss per cleaning (lb)} \\ P &= \text{true vapor pressure of exposed material in the tank (psia)} \\ V_{v} &= \text{volume of the vapor space under the floating roof (ft3)} \\ R &= \text{ideal gas constant (psia ft3 per lb-mole6 R) = 10.731} \\ T &= \text{average temperature of the vapor space (degrees Rankine)} \\ M_{v} &= \text{stock vapor molecular weight (lb/lb-mol)} \\ n_{d} &= \text{the time that the tank stands idle (days)} \\ K_{E} &= \text{vapor space expansion factor (dimensionless)} \\ K_{S} &= \text{the standing idle saturation factor (dimensionless)} \end{split}$

Floating Roof Tank	ating Roof Tank Standing Idle Emissions									Controlled	
EPN	FIN	ΔT _v (°R)	K _E	h _v (ft)	V _v (ft ³)	Ks	L _s (lb/event)	Hourly VOC Emissions (lb/hr) ¹	Annual VOC Emissions ² (tpy)	Hourly VOC Emissions (lb/hr)	Annual VOC Emissions ³ (tpy)
T-50	T-50	55.02	0.36	6.13	43,418	0.25	1588.7	13.24	0.79	0.26	0.02
T-51	T-51	55.02	0.36	6.13	43,418	0.25	1588.7	13.24	0.79	0.26	0.02
T-52	T-52	55.02	0.58	6.36	22,418	0.21	1410.4	11.75	0.71	0.24	0.01
T-53	T-53	55.02	0.58	6.36	22,418	0.21	1410.4	11.75	0.71	0.24	0.01
							Total	13.24	3.00	0.26	0.06

¹ It is conservatively assumed that the total uncontrolled emissions released per event are released in an hourly basis (i.e., one hour).

² Uncontrolled Annual Emissions (tpy) = L_s (lb/event) x Number of Events (events/yr) / 2,000 (lb/ton)						
Example Annual Emissions =	1589 lb	1 event	ton	_	0.79 tpy	
_	event	yr	2,000 lb	-		
³ Controlled Annual Emissions (tpy) = Ur	controlled An	nual Emissions (tpy) x	[1 - Control Efficiency	7 (%) / 100%]		
Example Annual Emissions =	0.79 tpy	[1-0%/100%]	_	0.02 tpy		
_			-			

Tank Cleanings - Vapor Space Purge Emissions

Basis:	API Technical Report 2568, "Evaporat	API Technical Report 2568, "Evaporative Loss from the Cleaning of Storage Tanks," p. 3, November 2007			
	IFR Vapor Space Purge Calculations	s			
	$h_v = h_d - h_l$	h_v = height of the vapor space under the floating roof for the given standing idle period (ft) h_d = height of the floating roof deck above the tank bottom at the tank shell (ft) h_l = height of the stock liquid and sludge above the tank bottom at the tank shell for a given stage in the tank cleaning process (ft)			
	$V_{\nu} = (h_{\nu})(\frac{\pi D^2}{4})$	V_v = volume of the vapor space under the floating roof (ft ³) h_v = height of the vapor space under the floating roof for the given standing idle period (ft) D = tank diameter (ft)			
	$L_p = \left(\frac{PV_v}{RT}\right) M_v S$	$\begin{split} L_{p} &= \text{vapor purge loss per cleaning (lb)} \\ P &= \text{true vapor pressure of exposed material in the tank (psia)} \\ V_{v} &= \text{volume of the vapor space under the floating roof (ft^{3})} \\ R &= \text{ideal gas constant (psia ft^{3} per lb-mole R)} = 10.731 \\ T &= \text{average temperature of the vapor space (degrees Rankine)} \\ M_{v} &= \text{stock vapor molecular weight (lb/lb-mol)} \\ S &= \text{filling saturation factor (dimensionless)} \end{split}$			

Vapor Space Purge Emissions	5				Uncont	trolled	Contro	olled
EPN	FIN ¹	h _v (ft)	V _v (ft ³)	L _p (lb/event)	Hourly VOC Emissions ² (lb/hr)	Annual VOC Emissions ³ (tpy)	Hourly VOC Emissions ⁴ (lb/hr)	Annual VOC Emissions ⁵ (tpy)
T-50	T-50	6.92	49,029	2358.4	49.1	1.18	1.0	0.02
T-51	T-51	6.92	49,029	2358.4	49.1	1.18	1.0	0.02
T-52	T-52	6.92	24,387	1491.1	31.1	0.75	0.6	0.01
T-53	T-53	6.92	24,387	1491.1	31.1	0.75	0.6	0.01
				Total	49.1	3.85	1.0	0.08

¹ Tank cleaning operations will only occur for one of the floating roof tanks in one hour.

² Uncontrolled Hourly Emissions (lb/rr) = L_p (lb/event) / Activity Duration (hr/event)

Example Hourly Emissions =	2,358 lb	event	=	49.1 lb	_		
	event	48 hr	-	hr	-		
³ Uncontrolled Annual Emissions (tpy) = L_P (lb/event) x Number of Events (events/yr) / 2,000 (lb/ton)							
Example Annual Emissions =	2,358 lb	1 event	ton	=	1.18 tpy		
	event	yr	2,000 lb	_			

Tank Cleanings - Sludge Removal Emissions

API Technical Report 2568, "Evaporative Loss from the Cleaning of Storage Tanks," November 2007

Sludge Removal Calculations

Basis:

$C_{v} = \left(\frac{average \% LEL as disp}{100}\right)$	$\left(\frac{\text{LEL of the calibration gas, volume \% in air}}{100}\right) RF$	C _v = average vapor concentration by volume during sludge removal (dimensionless) RF = response factor for a given vapor composition (dimensionless)
$C_{V(max)} = \frac{P}{Pa}$	C _{V(max)} = maximum vapor concentration by volum P = true vapor pressure of exposed material P _a = atmospheric pressure at the tank locati	in the tank (psia)
$L_{SR} = 60Q_v n_{SR} t_v C_v \frac{P_a M_v}{RT}$	$\begin{split} L_{SR} &= \text{sludge removal loss per cleaning (lb)} \\ Q_v &= \text{ventilation rate during sludge removal} \\ n_{SR} &= \text{time for sludge removal (days)} \\ t_v &= \text{daily period of forced ventilation (hours} \\ C_V &= \text{average vapor concentration by volume} \\ P_a &= \text{atmospheric pressure at the tank locati} \\ M_v &= \text{stock vapor molecular weight (lb/lb-m} \\ R &= \text{ideal gas constant (psia ft^3 per lb-mole2 F)} \\ T &= \text{average temperature of the vapor space} \end{split}$:/day) e during sludge removal (dimensionless) on (psia) ol) t) = 10.731
$L_{SR(max)} = 5.9 D^2 h_{le} W_I$	$\begin{array}{l} L_{SR(max)} = maximum sludge removal loss per clean\\ D = tank diameter (ft)\\ h_{le} = the effective height of the stock liquid a\\ W_{l} = stock liquid density (lb/gal) \end{array}$	ing (lb) nd sludge for the given sludge removal period (ft)

dge Removal Emissions								Uncor	itrolled	Cor	ntrolled
EPN	FIN	Number of Days Sludge Removal Occurs per Event	Number of Sludge Removal Events Per Year	C _v	C _{v(max)}	L _{sR} (lb/yr)	L _{SR(max)} (lb/yr)	Hourly VOC Emissions ^{1,2} (lb/hr)	Annual VOC Emissions ³ (tpy)	Hourly VOC Emissions (lb/hr)	Annual VOC Emissions (tpy)
T-50	T-50	4	1.00	6.93E-04	0.612	9,262	330,674	193.0	4.63	3.9	0.09
T-51	T-51	4	1.00	6.93E-04	0.612	9,262	330,674	193.0	4.63	3.9	0.09
T-52	T-52	4	1.00	6.93E-04	0.748	3,194	95,120	66.5	1.60	1.3	0.03
T-53	T-53	4	1.00	6.93E-04	0.748	3,194	95,120	66.5	1.60	1.3	0.03
							Total	193.0	12.46	3.9	0.25

¹ Hourly emissions are based on the expected total annual hours of sludge removal (i.e., 4 days per year, 12 hours per day for a total 48 hours per year per tank).

² Uncontrolled Hourly Emissions (lb/hr) = L_{SR} (lb/yr) / n_{SR} (days/event) / t_v (hr/day) / Number of Sludge Removal Events (events/yr)

Example Hourly Emissions =	9,262 lb	event	day	yr	=	193.0 lb
_	yr	4 days	12 hr	1 event		hr
³ Uncontrolled Annual Emissions (tpy) = L _{SR} (lb/yr) / 2,	000 (lb/ton)					
Example Annual Emissions =	9,262 lb	ton	=	4.6 tpy		
	yr	2,000 lb				

Tank Cleanings - Tank Refilling Emissions

API Technical Report 2568, "Evaporative Loss from the Cleaning of Storage Tanks," p. 3, November 2007

Floating Roof Tank Filling Calculations

$h_v = h_d$ for conservatively high estimate	h_v = height of the vapor space under the floating roof for the given standing idle period (ft) h_d = height of the floating roof deck above the tank bottom at the tank shell (ft)
$V_{v} = (h_{v})(\frac{\pi D^{2}}{4})$	V_v = volume of the vapor space under the floating roof (ft ³) h_v = height of the vapor space under the floating roof for the given standing idle period (ft) D = tank diameter (ft)
$L_F = \left(\frac{PV_v}{RT}\right) M_v S$	$ \begin{split} L_F &= \text{filling loss per cleaning (lb)} \\ P &= \text{true vapor pressure of exposed material in the tank (psia)} \\ V_v &= \text{volume of the vapor space under the floating roof (ft^3)} \\ R &= \text{ideal gas constant (psia ft^3 per lb-mole R)} = 10.731 \\ T &= \text{average temperature of the vapor space (degrees Rankine)} \\ M_v &= \text{stock vapor molecular weight (lb/lb-mol)} \end{split} $

S = filling saturation factor (dimensionless)

g Roof Tank Refil EPN	lling Emissions FIN	h _v (ft)	Diameter (ft)	V _v (ft ³)	L _F (lb/event)	Unco Hourly VOC Emissions ¹ (lb/hr)	ntrolled Annual VOC Emissions ² (tpy)	Cont Hourly VOC Emissions (lb/hr)	rolled Annual VOC Emissions (tpy)
T-50	T-50	6.1	95	43,418	522.1	2.98	0.26	0.06	0.01
T-51	T-51	6.1	95	43,418	522.1	2.98	0.26	0.06	0.01
T-52	T-52	6.4	67	22,418	342.7	5.87	0.17	0.12	0.00
T-53	T-53	6.4	67	22,418	342.7	5.87	0.17	0.12	0.00
					Total	5.87	0.86	0.12	0.02

¹ Uncontrolled Hourly Emissions (lb/hr) = L _F	(lb/event) /	Time to Refill Tank (hours/event)
	F00 4 11	

oneone oneu nourly Emissions (ib/m) – E	(ib/evency/i	line to Keim Tank (not	ur sy eveneg		
Example Hourly Emissions =	522.1 lb	event	=	3.0 lb	_
	event	175.0 hr		hr	
² Uncontrolled Annual Emissions (tpy) = L_F (II	o/event) x Nu	mber of Events (events	s/yr) x / 2,000	(lb/ton)	
Example Annual Emissions =	522.1 lb	1 event	ton	=	0.26 tpy
-	event	yr	2,000 lb		

Basis:

Summary of MSS Emissions - Tank Roof Landings

Description	EPN	Hourly VOC Emissions ^{1, 2} (lb/hr)	Annual VOC Emissions ² (tpy)
Standing Idle		0.26	0.01
Refilling		0.47	0.07
	Total	0.5	0.1

Summary of Tanks MSS VOC Emissions

¹ It is assumed that only one of the tank cleaning operations will occur within one hour on a tank by tank basis.

 2 Associated NO_X, SO₂, and CO emissions from the combustion of the waste gas associated with these activities are presented within the control device emission calculation tables.

Tank Landings - Standing Idle Emissions

API Technical Report 2567, "Evaporative Loss from Storage Tank Floating Roof Landings," p. 24, April 2005

IFR with Liquid Heel Standing Idle Calculations

Basis:

$h_{le} = \left(h_l + \frac{sD}{72}\right)$	 h_{ie} = effective height of the stock liquid and sludge for a given stage in the tank cleaning process (ft) h_i = height of the stock liquid and sludge above the tank bottom at the tank shell for a given stage in the tank cleaning process (ft) s = slope of the tank bottom (in/ft) D = tank diameter (ft)
$h_v = h_d - h_{le}$	h_v = height of the vapor space under the floating roof for the given standing idle period (ft) h_d = height of the floating roof deck above the tank bottom at the tank shell (ft) h_{le} = height of the stock liquid and sludge above the tank bottom at the tank shell for a given stage in the tank cleaning process (ft)
$V_{\nu} = (h_{\nu})(\frac{\pi D^2}{4})$	V_v = volume of the vapor space under the floating roof (ft ³) h_v = height of the vapor space under the floating roof for the given standing idle period (ft) D = tank diameter (ft)
$L_{SR(max)} = 5.9D^2 h_{le} W_l$	L _{SR(max)} = maximum sludge removal loss per cleaning (lb) D = tank diameter (ft) h _{le} = the effective height of the stock liquid and sludge for the given sludge removal period (ft) W ₁ = stock liquid density (lb/gal)
$L_s = n_d K_E (\frac{PV_V}{RT}) M_V K_S$	$\begin{split} L_{s} &= \text{standing idle loss per cleaning (lb)} \\ P &= \text{true vapor pressure of exposed material in the tank (psia)} \\ V_{v} &= \text{volume of the vapor space under the floating roof (ft3)} \\ R &= \text{ideal gas constant (psia ft3 per lb-mole6 R) = 10.731} \\ T &= \text{average temperature of the vapor space (degrees Rankine)} \\ M_{v} &= \text{stock vapor molecular weight (lb/lb-mol)} \\ n_{d} &= \text{the time that the tank stands idle (days)} \\ K_{E} &= \text{vapor space expansion factor (dimensionless)} \\ K_{s} &= \text{the standing idle saturation factor (dimensionless)} \end{split}$

Floating Roof Tank	oating Roof Tank Standing Idle Emissions							Uncon	trolled	Cont	rolled
EPN	FIN	ΔT _v (°R)	K _E	h _v (ft)	V _v (ft ³)	Ks	L _s (lb/event)	Hourly VOC Emissions (lb/hr) ¹	Annual VOC Emissions ² (tpy)	Hourly VOC Emissions (lb/hr)	Annual VOC Emissions ³ (tpy)
T-50	T-50	55.02	0.36	6.13	43,418	0.25	317.7	13.24	0.16	0.26	0.00
T-51	T-51	55.02	0.36	6.13	43,418	0.25	317.7	13.24	0.16	0.26	0.00
T-52	T-52	55.02	0.58	6.36	22,418	0.21	282.1	11.75	0.14	0.24	0.00
T-53	T-53	55.02	0.58	6.36	22,418	0.21	282.1	11.75	0.14	0.24	0.00
							Total	13.24	0.60	0.26	0.01

¹ It is conservatively assumed that the total emissions released per day are released in an hourly basis (i.e., one hour).

² Uncontrolled Annual Emissions (tpy) =	L _s (lb/event) :	x Number of Events (e	vents/yr) / 2,000 (lb	/ton)	
Example Annual Emissions =	318 lb	1 event	ton	_	0.16 tpy
	event	yr	2,000 lb	-	
³ Controlled Annual Emissions (tpy) = Un				cy (%) / 100%]	
Example Annual Emissions =	0.16 tpy	[1-98%/100%]	-	0.00 tpy	

Tank Landings - Tank Refilling Emissions

API Technical Report 2567, "Evaporative Loss from Storage Tanks Floating Roof Landings," p. 24, April 2005

Floating Roof Tank Filling Calculations

$h_{v} = h_{d}$ for conservatively high estimate	h_v = height of the vapor space under the floating roof for the given standing idle period (ft) h_d = height of the floating roof deck above the tank bottom at the tank shell (ft)
$V_v = (h_v)(\frac{\pi D^2}{4})$	V_v = volume of the vapor space under the floating roof (ft ³) h_v = height of the vapor space under the floating roof for the given standing idle period (ft) D = tank diameter (ft)
$L_F = \left(\frac{PV_v}{RT}\right) M_v S$	$L_{F} = filling loss per cleaning (lb)$ $P = true vapor pressure of exposed material in the tank (psia)$ $V_{v} = volume of the vapor space under the floating roof (ft3)$ $R = ideal gas constant (psia ft3 per lb-molee R) = 10.731$ $T = average temperature of the vapor space (degrees Rankine)$ $M_{v} = stock vapor molecular weight (lb/lb-mol)$ $S = filling saturation factor (dimensionless)$

11.9 lb

Roof Tank Refilling Emissions						Unco	ntrolled	Controlled	
EPN	FIN	h _v (ft)	Diameter (ft)	V _v (ft ³)	L _F (lb/event)	Hourly VOC Emissions ¹ (lb/hr)	Annual VOC Emissions ² (tpy)	Hourly VOC Emissions ¹ (lb/hr)	Annual VO(Emissions ² (tpy)
T-50	T-50	6.1	95	43,418	2,088.5	11.93	1.04	0.24	0.02
T-51	T-51	6.1	95	43,418	2,088.5	11.93	1.04	0.24	0.02
T-52	T-52	6.4	67	22,418	1,370.7	23.50	0.69	0.47	0.01
T-53	T-53	6.4	67	22,418	1,370.7	23.50	0.69	0.47	0.01
					Total	23.50	3.46	0.47	0.07

¹ Uncontrolled Hourly Emissions (lb/hr) = L_F (l	lb/event) / Ti	me to Refill Tank (hour	rs/event)	
Example Hourly Emissions =	2088.5 lb	event	=	

· · ·	event	175.0 hr		hr	
² Uncontrolled Annual Emissions (tpy) = L_F (lb)	o/ton)				
Example Annual Emissions =	2088.5 lb	1 event	ton	=	1.04 tpy
	event	yr	2,000 lb		

Basis:

Summary of MSS Emissions - Fixed Tank Cleanings

Description	EPN	Hourly VOC Emissions ^{1, 2} (lb/hr)	Annual VOC Emissions ² (tpy)
Vapor Space Purge		0.39	4.28E-04
Sludge Removal		4.17	0.38
	Total	4.2	0.4

Summary of Tanks MSS VOC Emissions

¹ It is assumed that only one of the tank cleaning operations will occur within one hour on a tank by tank basis.

 2 Associated NO_X, SO₂, and CO emissions from the combustion of the waste gas associated with these activities are presented within the control device emission calculation tables.

Tank Cleanings - Vapor Space Purge Emissions

API Technical Report 2568, "Evaporative Loss from the Cleaning of Storage Tanks," p. 3, November 2007

Fixed Roof Tanks Vapor Space Purge Calculations

$H_{VO} = H_S - h_l + H_{RO}$	H_{V0} = height of the fixed roof tank vapor space outage (ft) H_S = height of the tank shell (ft) h_I = height of the stock liquid and sludge above the tank bottom at the tank shell for a given stage in the tank cleaning process (ft) H_{R0} = height of the roof outage (the effective height of the vapor space enclosed by the tank roof) (ft)
$V_{\nu} = (H_{VO})(\frac{\pi D^2}{4})$	V_v = volume of the vapor space under the floating roof (ft ³) h_v = height of the vapor space under the floating roof for the given standing idle period (ft) D = tank diameter (ft)
$S = \frac{0.5(n_d) + 1}{6}$	S = filling saturation factor n_d = standing idle time (days)
$L_p = \left(\frac{PV_p}{RT}\right) M_v S$	$\begin{split} L_{p} &= \text{vapor purge loss per cleaning (lb)} \\ P &= \text{true vapor pressure of exposed material in the tank (psia)} \\ V_{v} &= \text{volume of the vapor space under the floating roof (ft^{3})} \\ R &= \text{ideal gas constant (psia ft^{3} per lb-mole R)} = 10.731 \\ T &= \text{average temperature of the vapor space (degrees Rankine)} \\ M_{v} &= \text{stock vapor molecular weight (lb/lb-mol)} \\ S &= \text{filling saturation factor (dimensionless)} \end{split}$

Vapor Space Purge Emissio	por Space Purge Emissions				Uncontrolled		Controlled	
					Hourly VOC	Annual VOC	Hourly VOC	Annual VOC
		H _{vo}	V _v	L _p	Emissions ²	Emissions ³	Emissions ²	Emissions ³
EPN	FIN ¹	(ft)	(ft ³)	(lb/event)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TK54	TK54	40.18	177,498	19.5	19.53	9.76E-03	0.39	1.95E-04
TK55	TK55	40.18	177,498	19.5	19.53	9.76E-03	0.39	1.95E-04
TK56	TK56	40.15	141,554	1.3	1.32	6.62E-04	0.03	1.32E-05
TK57	TK57	40.15	141,554	1.3	1.32	6.62E-04	0.03	1.32E-05
TK58	TK58	14.95	1,174	0.1	0.10	4.76E-05	1.90E-03	9.52E-07
TK592	TK592	24.00	11,783	1.0	0.96	4.78E-04	0.02	9.56E-06
				Total	19.53	0.02	0.39	4.28E-04

¹ Tank cleaning operations will only occur for one of the tanks in one hour.

² Uncontrolled Hourly Emissions (lb/hr) = L _P (lb/ev	ent) / Activity D	uration (hr/event)			
Example Hourly Emissions =	20 lb	event	=	19.53 lb	
_	event	01 hr		hr	
³ Uncontrolled Annual Emissions (tpy) = L _P (lb/even	nt) x Number of l	Events (events/yr) /	2,000 (lb/ton)		
Example Annual Emissions =	20 lb	1 event	ton	=	0.01 tpy
_	event	yr	2,000 lb		
⁴ Controlled Hourly Emissions (lb/hr) = Uncontrolle	ed Hourly Emissi	ons (lb/hr) x (100% -	- Control Efficiency	(%))	
Example Hourly Emissions =	19.53 lb	(100% - 98%)	=	0.39 lb	
	hr			hr	
⁵ Controlled Annual Emissions (tpy) = Uncontrolled	Annual Emission	ns (tpy) x (100% - Co	ntrol Efficiency (%))	
Example Annual Emissions =	9.76E-03 tpy	(100% - 98%)	=	1.95E-04 tpy	

Basis:

Tank Cleanings - Sludge Removal Emissions

API Technical Report 2568, "Evaporative Loss from the Cleaning of Storage Tanks," November 2007

Sludge Removal Calculations

Basis:

$C_v = \left(\frac{average \% LEL as disp}{100}\right)$	$\left(\frac{\text{LEL of the calibration gas, volume \% in air}}{100}\right) RF$	C _v = average vapor concentration by volume during sludge removal (dimensionless) RF = response factor for a given vapor composition (dimensionless)
$C_{V(max)} = \frac{P}{Pa}$	$C_{V(max)}$ = maximum vapor concentration by volume P = true vapor pressure of exposed material P_a = atmospheric pressure at the tank location	in the tank (psia)
$L_{SR} = 60 Q_{\nu} n_{SR} t_{\nu} C_{\nu} \frac{P_a M_{\nu}}{RT}$	$\begin{split} L_{SR} &= \text{sludge removal loss per cleaning (lb)} \\ Q_v &= \text{ventilation rate during sludge removal (} \\ n_{SR} &= \text{time for sludge removal (days)} \\ t_v &= \text{daily period of forced ventilation (hours)} \\ C_V &= \text{average vapor concentration by volume} \\ P_a &= \text{atmospheric pressure at the tank location} \\ M_v &= \text{stock vapor molecular weight (lb/lb-moder)} \\ R &= \text{ideal gas constant (psia ft^3 per lb-mole R)} \\ T &= \text{average temperature of the vapor space (} \end{split}$	/day) during sludge removal (dimensionless) n (psia) l) = 10.731
$L_{SR(max)} = 5.9D^2 h_{le} W_I$	$\begin{array}{l} L_{SR(max)} = maximum sludge removal loss per cleani\\ D = tank diameter (ft)\\ h_{le} = the effective height of the stock liquid an \\ W_l = stock liquid density (lb/gal) \end{array}$	ng (lb) nd sludge for the given sludge removal period (ft)

Sludge Removal Emissions								Uncon	trolled	Contr	olled
EPN	FIN	Number of Days Sludge Removal Occurs per Event	Number of Sludge Removal Events Per Year	C _v	C _{v(max)}	L _{SR} (lb/yr)	L _{SR(max)} (lb/yr)	Hourly VOC Emissions ^{1,2} (lb/hr)	Annual VOC Emissions ³ (tpy)	Hourly VOC Emissions ^{1,2} (lb/hr)	Annual VOC Emissions ³ (tpy)
TK54	TK54	4	1.00	6.93E-04	0.001	10,006	166,827	208.5	5.00	4.2	0.10
TK55	TK55	4	1.00	6.93E-04	0.001	10,006	166,827	208.5	5.00	4.2	0.10
TK56	TK56	4	1.00	6.93E-04	0.000	8,603	134,188	179.2	4.30	3.6	0.09
TK57	TK57	4	1.00	6.93E-04	0.000	8,603	134,188	179.2	4.30	3.6	0.09
TK58	TK58	4	1.00	6.93E-04	0.001	49	697	1.0	0.02	0.0	0.00
TK592	TK592	4	1.00	6.93E-04	0.001	492	7,627	10.2	0.25	0.2	0.00
							Total	208.5	18.88	4.2	0.38

¹Hourly emissions are based on the expected total annual hours of sludge removal (i.e., 4 days per year, 12 hours per day for a total 48 hours per year per tank).

² Uncontrolled Hourly Emissions (lb/hr) = L_{SR} (lb/yr) / n_{SR} (days/event) / t_V (hr/day) / Number of Sludge Removal Events (events/yr)

Example Hourly Emissions =	10,006 lb	event	day	yr	=	208.5 lb	
	yr	4 days	12 hr	1 events		hr	
³ Uncontrolled Annual Emissions (tpy) = L_{sR} (lb/yr) / 2,000 (lb/ton)							
Example Annual Emissions =	10,006 lb	ton	=	5.0 tpy			
	yr	2,000 lb					

FLARE EMISSIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

Flare Pilot Emissions

Input Data		
EPN	MSS-FLR	
Heating Value of Natural Gas =	1,000	Btu/scf
Fuel Gas Flow rate per Pilot =	50	scf/hr-pilot
Number of Pilots =	1	
Gas Stream Heat Input =	0.05	MMBtu/hr
Gas Stream Heat Input =	438.00	MMBtu/yr
Hours of Operation =	8,760	hr/yr

Pollutant	Emission Factor (lb/MMBtu)	Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (tpy)
NO _X	0.138	TCEQ Guidance	0.01	0.03
СО	0.2755	TCEQ Guidance	0.01	0.06

¹ From TCEQ "Air Permit Guidance For Chemical Sources, Flare And Vapor Oxidizers" (Draft Oct. 2000) Table 4, emission factors for industrial flares combusting high-Btu vapors.

² Maximum P	otential Hourly Emi	ssion Rate (lb/hr)	= Gas Strean	n Heat Input	(MMBtu/hr) x Ei	mission Factor (lb/MMBtu)	

Example NO _X Hourly Emission Rate (lb/hr) =	0.05 MMBtu	0.138 lb	=	0.01 lb
_	hr	MMBtu		hr

yr

³ Maximum Potential Annual Emission Rate (tpy) = Gas Stream Heat Input (MMBtu/yr) x Emission Factor (lb/MMBtu) / (2,000 lb/ton) Example NO_x Annual Emission Rate (tpy) = 438.00 MME =

0.03 ton yr

Compound	Composition ¹	MW	DRE	Gas Vente	ed to Flare ^{2,3}	Controlled	Emissions ⁴
	(Mole %)	(lb/lb-mole)	(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
H ₂ S ⁵	0.002	34.08	98%	8.98E-05	3.93E-04	1.80E-06	7.87E-06
Propane	0.20	44.10	99%	0.01	0.05	1.16E-04	5.09E-04
i-Butane	0.03	58.12	98%	2.30E-03	0.01	4.59E-05	2.01E-04
n-Butane	0.03	58.12	98%	2.30E-03	0.01	4.59E-05	2.01E-04
i-Pentane	0.01	72.15	98%	9.51E-04	4.16E-03	1.90E-05	8.33E-05
n-Pentane	0.01	72.15	98%	9.51E-04	4.16E-03	1.90E-05	8.33E-05
Hexane	0.01	86.18	98%	1.14E-03	4.97E-03	2.27E-05	9.95E-05
Heptane		100.21	98%	0.00E+00	0.00E+00	0.00E+00	0.00E+00
VOC	0.290			0.02	0.08	2.69E-04	1.18E-03
HAPS ⁶	0.01			1.14E-03	4.97E-03	2.27E-05	9.95E-05
SO ₂		64				1.65E-04	7.24E-04

¹ Speciated composition is based on https://www.uniongas.com/about-us/about-natural-gas/chemical-composition-of-natural-gas.

² Gas Vented to Flare (lb/hr) = Volume (scf/hr) x Mole Percent / 100 x MW (lb/lb-mole) / 379.5 (scf/lb-mole) Example Propane Hourly Emission Rate (lb/hr) = 050 scf 0.20 % 44.10 lb lb-mole 0.01 lb hr lb-mole 379.5 scf hr ³ Annual Emissions vented to flare (tpy) = Hourly Emissions (lb/hr) x Operation (hrs/yr) x (1 ton / 2,000 lb) Example Propane Vented to Flare Annual Emission Rate (tpy) = 0.01 lb 8760 hrs 1 ton 0.05 tpy hr 2,000 lb vr ⁴ Controlled Hourly Emission Rate (lb/hr) = Gas Vented to Flare (lb/hr) x (1 - DRE) Example Controlled Propane Hourly Emission Rate (lb/hr) = 0.01 lb (1 - 99%)0.00 lb = hr hr

 $^{\rm 5}$ Assuming 20 ppm of $\rm H_2S$ in natural gas

⁶ The weight percent of Hexane is used to conservatively account for the total HAP emissions.

Flare Waste Gas Combustion Emissions - MSS Operations Input Data

F · · · ·		
Heating Value of Waste Gas ¹ =	1,000.00	Btu/scf
Vapor MW =	50.00	lb/lb-mol
Maximum Waste Gas Volume =	3,223.68	scf/hr
Annual Waste Gas Volume =	654,408	scf/yr
Gas Stream Heat Input =	3.22	MMBtu/hr
Gas Stream Heat Input =	654	MMBtu/yr

¹ The heating value is based on the off-gas stream.

				Annual
Pollutant	Emission Factor (lb/MMBtu)	Source ¹	Emissions ² (lb/hr)	Emissions ³ (tpy)
NO _x	0.138	TCEQ Guidance	0.44	0.05
CO	0.2755	TCEQ Guidance	0.89	0.09

¹ From TCEQ "Air Permit Guidance For Chemical Sources, Flare And Vapor Oxidizers" (Draft Oct. 2000) Table 4, emission factors for industrial flares combusting high-Btu vapors.

² Maximum Potential Hourly Emission Rate (lb/hr) = Gas Stream Heat Input (MMBtu/hr) x Emission Factor (lb/MMBtu)

Example NO _x Hourly Emission Rate (lb/hr) =	3.22 MMBtu	0.138 lb	=	0.44 lb
	hr	MMBtu		hr

³ Maximum Potential Annual Emission Rate (tpy) = Gas Stream Heat Input (MMBtu/yr) x Emission Factor (lb/MMBtu) / (2,000 lb/ton)

Example NO _x Annual Emission Rate (tpy) =	0,654 MMBtu	0.138 lb	1 ton	=	0.05 ton
	yr	MMBtu	2,000 lb		yr

SURFACE COATING MSS EMISSIONS CALCULATIONS MMEX RESOURCES CORPORATION PECOS COUNTY REFINERY 07/27/2017

Basis of Calculation:

TCEQ's Painting Basics and Emissions Calculations for TCEQ Air Quality Permit Applications, November 5, 2012

VOC calculations are based on the product usage, VOC or HAP content, and density of a general paint used for MSS. The paint chosen has the highest VOC content of all paints typically used for these activities. It has been assumed that all VOC in the solution escapes to atmosphere. Emissions are calculated using the following equations:

Hourly VOC Emissions (lb/hr) = [Usage Rate (gal/hr)] * [VOC or HAP Content (lb/gal)]

Annual VOC Emissions (tpy) = [Usage Rate (gal/yr)] * [VOC or HAP Content lb/gal)] / [2,000 (lb/ton)]

It is assumed that all surface coating products are sprayed. Particulate emissions are calculated based on the usage rate and solids content for the product, as well as a transfer efficiency and fallout factor obtained from TCEQ's Painting Basics and Emissions Calculations for TCEQ Air Quality Permit Applications. The following equations are used to calculated particulate emissions:

Short-term PM emissions (lb/hr) = Solids Content (%) x Density (lb/gal) x Volume of Product used (gal/hr) x (1 - Transfer Efficiency (%)) x (1-Fallout Factor (%))

Annual PM emissions (tpy) = Solids Content (%) x Density (lb/gal) x Volume of Product used (gal/yr) x (1 - Transfer Efficiency (%)) x (1-Fallout Factor (%)) / 2,000 (lb/ton)

Potential VOC and HAP Emissions from Paint Usage (MSS)

Product	Density (lb/gal) ¹	VOC Content (lb/gal) ¹	HAP Content (wt %) ¹	Usage I	Usage Rates		issions	HAP Emi	ssions
				(gal/hr)	(gal/yr)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Paint	10.71	2.92	5.0	25.0	100.0	73.00	0.15	13.39	0.03
					Totals	73.00	0.15	13.39	0.03

¹ Per the representative Material Safety Data Sheet (MSDS).

Potential PM/PM₁₀/PM_{2.5} Emissions from Spray Paint Usage (MSS)

25 Solids Content		Usag	e Rates	Object Coated	Transfer	Fa	llout Factor (%)) ³	PM Em	issions	PM ₁₀ Er	nissions	PM _{2.5} E	missions
25	(wt %)	(gal/hr)	(gal/yr)	Object Coateu	Object Coated Efficiency ² (%)	РМ	PM ₁₀	PM _{2.5}	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Paint	80	25.00	100.00	Flat Surface	75	98.56	99.87	99.99	7.71E-01	1.54E-03	6.96E-02	1.39E-04	5.36E-03	1.07E-05

¹ Per the representative Material Safety Data Sheet (MSDS).

² Transfer efficiency per TCEQ guidance (TCEQ's Painting Basics and Emissions Calculations for TCEQ Air Quality Permit Applications, November 5, 2012).

³ Fallout factors per TCEQ's Painting Basics and Emissions Calculations for TCEQ Air Quality Permit Applications, November 5, 2012, Table 2-

Speciated Emissions

Commonition	% by Weight	Emi	ssions
Composition	% by weight	(lb/hr)	(tpy)
Ethylbenzene	0.7	1.87	3.75E-03
Xylene	4.0	10.71	0.02
Medium Aromatic Hydrocarbons	2.0	5.36	0.01
Naphthalene	0.3	0.80	1.61E-03
Methyl Ethyl Ketone	5.0	13.39	0.03
n-Butyl Acetate	9.0	24.10	0.05
1-methoxy-2-propanol Acetate	6.0	16.07	0.03
		72.29	0.14

Default VOC emissions for Miscellaneous MSS activities

Company Name	
--------------	--

MMEX RESOURCES CORPORATION

 Default VOC emissions (tpy) associated with miscellaneous MSS activities
 0.250

 Add default VOC emissions from miscellaneous MSS activities to the emissions summary
 Yes

#	Activity	Description / comments	Default parameters		Equation used		Input parameters	Annual emissions (tpy)					
1	(b)(1) Engine Oil	-Engine has been isolated and blow down occurs prior to oil change. The emissions	Temperature (°F)	212	Loading loss L _L (lb/1000	0.009	Number of engines 2	0.021					
	changes / Filter	associated with the blow down [106.359 (b) (8)] need to be accounted for in the oil	Vapor pressure (psia)	0.001	gal) Loading loss per activity								
	changes	and gas emission calculation spreadsheet.	Saturation factor	1		0.001							
	The emissions	-Oil is drained into a 4 ft x 4 ft open pan and transferred to a closed container per	Molecular weight (lb/lbmol)			(lb/activity)	(lb/activity)	(lb/activity)					
		Best Management Practice (BMP).	Motor oil (gal/activity)	112									
	occur during the draining	-Input parameters based on manufacturer specifications of engine oil SAE 10W (a). -Used a 1380 hp Caterpillar G3516B LE engine (b) as basis for calculation. In order	U wind speed (m/s)	3.52	Evaporation Loss (lb/activity)	1.027							
		to account for emissions from larger horse power engines, the emissions are	Vapor pressure P _v (Pa)	10									
	into oil pan or container.	doubled. An average engine uses 112 gallons of motor oil and manufacturer	Molecular weight (lb/lbmol)	500	-								
		recommends changing oil every 1000 hrs. We used 10 changes of oil per year as a conservative estimate.	Surface Area A_n (m ²) (4ft * 4ft)	1.48									
		-Emission estimates for 1380 hp engine are being doubled to be conservative and to	Evaporation time t (hrs)	10									
		accommodate engines with higher hp.	Number of activities per year (Number of oil changes per engine per year)	10	Total (lbs/yr/engine) 20.565	20.565							
			Factor used to account for larger horsepower engines	2									
2	(b)(1) & (b)(4)	Engine has been isolated and blow down occurs prior to changing rod packing. The	Temperature (°F)	104	Clingage loss (lb/activity) 0.0001	0.0001	Number of engines 2	1.16744E-06					
	Changing Engine Rod	emissions associated with the blow down [106.359 (b) (8)] need to be accounted for	Vapor pressure (psia)	0.001			ramoer of onglinos 2						
	Packings	in the oil and gas emission calculation spreadsheet.	Molecular weight (lb/lb-mole)	500									
	Emissions from	-Emissions from clingage are the evaporation of the lubricant adhered to the rod	V_v Casing volume (ft ³) (1ft * 3ft)	2.355									
	changing of the rod	packing casing.	Ideal gas constant (psia-ft3/lb-mol-°R)	10.73									
	would be from clingage	-Casing volume for calculations is based on field observation of casing for a 1380hp	Number of activities per year (Number of	10		0.0012							
		G3516B LE engine(b). -Input parameters based on material specifications for AP 101(c) grease.	rod packing changes per year per engine)										
	(b)(3) Changing wet	-Engine has been isolated and blow down occurs prior to changing seals. The	Temperature (°F)	104	Clingage loss (lb/activity)	0.0001	Number of engines 2	0.000000					
		emissions associated with the blow down [106.359 (b) (8)] need to be accounted for	Vapor pressure of material stored (psia)	0.001	Chingage 1055 (10/activity)	0.0001	rumber of engines 2	0.00000					
	~	in the oil and gas emission calculation spreadsheet.	Molecular weight (lb/lb-mole)	500	_								
	seals would be from	-Emissions from clingage are the evaporation of the lubricant adhered to the rod	V_v Casing volume (ft ³) (1ft * 3ft)	2.355									
	clingage of lubricant in	packing casing.	Ideal gas constant (psia-ft3/lb-mol-°R)	10.73	-								
	the casingC	 -Casing volume for calculations is based on field observation of casing for a 1380 hp Caterpillar G3516B LE engine (b). -Input parameters based on material specifications for AP 101(c) grease. 	Number of activities per year (Number of seal changes per year)	2	Total (lbs/yr/engine) 0.0002								

#	Activity	Description / comments	Default parameters		Equation used	Equation used		Input parameters	
4	(b)(2) Aerosol Lubricants	-45-50% VOC by weight volatilizes. -Material specification per Lubricant MSDS (f). -VOC evaporation is based off standard engineering judgment consistent with product - Standard Industrial Size Cans (oz.) 16	specification.		Pounds of emissions per can (lb/can)	0.5	Number of 16 oz cans used	100	0.025
5	(b)(3) Pneumatic controllers	Based on field experience and recent site visits to two plants in Central Texas area, cha emissions associated with changing the controller.	anging pneumatic controllers of equipment	under press	sure requires isolation of pipe s	section or	process equipment ar	id a blow dov	vn. There are no
5	(b)(2) Calibration	-Per Monitoring Division's Laboratory and Quality Assurance Section - One cylinder of pentane or other calibration gas used per year and a typical cylinder contains 100	Pounds of pentane in one cylinder (lb)	100	Pounds of pentane in one cylinder (lb/cylinder)	100	Number of cylinders	1	0.050
7	(b)(6) Safety factor to acc	count for MSS activities with the same character and quantity of emissions as those lister	d in paragraphs (b) (1) - (5) of §106.359.					1	0.028

	TPY	lbs/hr
Total VOC Emissions	0.124	0.028

This section lists the general requirements for authorization under PBR with a description of how the PCR will comply with each requirement. Requirements of each specific PBR claimed in this registration are identified and discussed in Section 8 of this registration. A PBR §106.4 checklist is provided in Section 11.

7.1 REQUIREMENTS FOR PERMITTING BY RULE (30 TAC §106.4) EFFECTIVE APRIL 17, 2014

- (a) To qualify for a permit by rule, the following general requirements must be met.
 - (1) Total actual emissions authorized under permit by rule from the facility shall not exceed the following limits, as applicable:

(A) 250 tons per year (tpy) of carbon monoxide (CO) or nitrogen oxides (NO_X);

(B) 25 tpy of volatile organic compounds (VOC), sulfur dioxide (SO₂), or inhalable particulate matter (PM);

(C) 15 tpy of particulate matter with diameters of 10 microns or less (PM₁₀);

(D) 10 tpy of particulate matter with diameters of 2.5 microns or less (PM_{2.5}); or

(E) 25 tpy of any other air contaminant except:

(i) water, nitrogen, ethane, hydrogen, and oxygen; and

(ii) notwithstanding any provision in any specific permit by rule to the contrary, greenhouse gases as defined in §101.1 of this title (relating to Definitions).

As presented in Sections 6 and 7 of this registration, the total emissions from the MSS activities authorized via PBR will not exceed the emission limitations set forth in this section.

(2) Any facility or group of facilities, which constitutes a new major stationary source, as defined in §116.12 of this title (relating to Nonattainment and Prevention of Significant Deterioration Review Definitions), or any modification which constitutes a major modification, as defined in §116.12 of this title, under the new source review requirements of the Federal Clean Air Act (FCAA), Part D (Nonattainment) as amended by the FCAA Amendments of 1990, and regulations promulgated thereunder, must meet the permitting requirements of Chapter 116, Subchapter B of this title (relating to New Source Review Permits) and cannot qualify for a permit by rule under this chapter. Persons claiming a permit by rule under this chapter should see the requirements of §116.150 of this title (relating to New Major Source or Major Modification in Ozone Nonattainment Areas) to ensure that any applicable netting requirements have been satisfied.

The PCR is located in Pecos County, which is considered an attainment or unclassifiable area for all criteria pollutants;² therefore, Nonattainment New Source Review (NNSR) permitting requirements do not apply to the MSS activities proposed in this PBR.

(3) Any facility or group of facilities, which constitutes a new major stationary source, as defined in 40 Code of Federal Regulations (CFR) §52.21, or any change which constitutes a major modification, as defined in 40 CFR §52.21, under the new source review requirements of the FCAA, Part C (Prevention of Significant Deterioration) as amended by the FCAA Amendments of 1990, and regulations promulgated

² The United States Environmental Protection Agency (U.S.EPA) Green Book. Source: <u>https://www3.epa.gov/airquality/greenbook/hbcs.html#TX</u>. Accessed in June2017.

MMEX Resources Corporation | Pecos County Refinery Trinity Consultants

thereunder because of emissions of air contaminants other than greenhouse gases, must meet the permitting requirements of Chapter 116, Subchapter B of this title and cannot qualify for a permit by rule under this chapter. Notwithstanding any provision in any specific permit by rule to the contrary, a new major stationary source or major modification which is subject to Chapter 116, Subchapter B, Division 6 of this title due solely to emissions of greenhouse gases may use a permit by rule under this chapter for air contaminants that are not greenhouse gases. However, facilities or projects which require a prevention of significant deterioration permit due to emissions of greenhouse gases may not commence construction or operation until the prevention of significant deterioration permit is issued.

The PCR will be a minor source under the PSD program. As such, PSD permitting is not applicable.

(4) Unless at least one facility at an account has been subject to public notification and comment as required in Chapter 116, Subchapter B or Subchapter D of this title (relating to New Source Review Permits or Permit Renewals), total actual emissions from all facilities permitted by rule at an account shall not exceed 250 tpy of CO or NO_X; or 25 tpy of VOC or SO₂ or PM; or 15 tpy of PM₁₀; or 10 tpy of PM_{2.5}; or 25 tpy of any other air contaminant except water, nitrogen, ethane, hydrogen, oxygen, and GHGs (as specified in §106.2 of this title (relating to Applicability)).

The PCR has not gone through public notice as required in Chapter 116, Subchapter B of this title. The total emissions from the MSS activities authorized in this PBR are below the emission limits of this paragraph; therefore, this requirement has been met.

(5) Construction or modification of a facility commenced on or after the effective date of a revision of this section or the effective date of a revision to a specific permit by rule in this chapter must meet the revised requirements to qualify for a permit by rule.

The PCR meets the requirements under the PBRs currently in effect. In the event that the facilities are modified, MMEX will re-evaluate the applicability of the PBR in effect at the time of modification.

(6) A facility shall comply with all applicable provisions of the FCAA, §111 (Federal New Source Performance Standards) and §112 (Hazardous Air Pollutants), and the new source review requirements of the FCAA, Part C and Part D and regulations promulgated thereunder.

PCR will comply with applicable NSPS, MACT, and federal NSR requirements.

(7) There are no permits under the same commission account number that contain a condition or conditions precluding the use of a permit by rule under this chapter.

The PCR has no TCEQ permits that preclude the use of a PBR under this chapter.

(8) The proposed facility or group of facilities shall obtain allowances for NO_X if they are subject to Chapter 101, Subchapter H, Division 3 of this title (relating to Mass Emissions Cap and Trade Program).

The requirements of 30 TAC Chapter 101, Subchapter H, Division 3 of this title applies to facilities located in the Houston/Galveston/Brazoria nonattainment area. The site is not located in the affected area; therefore, this section does not apply.

(b) No person shall circumvent by artificial limitations the requirements of §116.110 of this title (relating to Applicability).

The affected facilities meet all the requirements of Chapter 106; therefore, a state permit is not required, and the requirements of 116.110 will not be circumvented.

(c) The emissions from the facility shall comply with all rules and regulations of the commission and with the intent of the Texas Clean Air Act (TCAA), including protection of health and property of the public, and all emissions control equipment shall be maintained in good condition and operated properly during operation of the facility.

The PCR will be in compliance with the rules and regulations of the TCAA. In addition, compliance with the requirements of 30 TAC Chapter 106 ensures protection of health and property of the public.

(d) Facilities permitted by rule under this chapter are not exempted from any permits or registrations required by local air pollution control agencies. Any such requirements must be in accordance with TCAA, §382.113 and any other applicable law.

There are no local air pollution control agencies with jurisdiction over the PCR.

7.2 REQUIREMENTS FOR RECORDKEEPING (30 TAC §106.8) EFFECTIVE NOVEMBER 1, 2001

(a) Owners or operators of facilities and sources that are de minimis as designated in §116.119 of this title (relating to De Minimis Facilities or Sources) are not subject to this section.

The equipment and activities covered in this registration are not de minimis facilities and are subject to the requirements of this section.

(b) Owners or operators of facilities operating under a permit by rule (PBR) in Subchapter C of this chapter (relating to Domestic and Comfort Heating and Cooling) or under those PBRs that only name the type of facility and impose no other conditions in the PBR itself do not need to comply with specific recordkeeping requirements of subsection (c) of this section. A list of these PBRs will be available through the commission's Austin central office, regional offices, and the commission's website. Upon request from the commission or any air pollution control program having jurisdiction, claimants must provide information that would demonstrate compliance with §106.4 of this title (relating to Requirements for Permitting by Rule), or the general requirements, if any, in effect at the time of the claim, and the PBR under which the facility is authorized.

The PCR is not using a PBR that only names the type of facility and imposes no other conditions in the PBR. Therefore, the proposed MSS activities are not exempt from the recordkeeping requirements of subsection (c) of this section and PCR will comply with the applicable requirements in this section.

- (c) Owners or operators of all other facilities authorized to be constructed and operate under a PBR must retain records as follows:
 - (1) maintain a copy of each PBR and the applicable general conditions of §106.4 of this title or the general requirements, if any, in effect at the time of the claim under which the facility is operating. The PBR and general requirements claimed should be the version in effect at the time of construction or installation or changes to an existing facility, whichever is most recent. The PBR holder may elect to comply with a more recent version of the applicable PBR and general requirements;

MMEX will maintain a copy of the PBRs claimed in this registration, including a copy of the general conditions of 30 TAC §106.4, as required by this provision. The PBRs claimed are the most recent versions as of the date of this registration.

(2) maintain records containing sufficient information to demonstrate compliance with the following: all applicable general requirements of §106.4 of this title or the general requirements, if any, in effect at the time of the claim; and all applicable PBR conditions;

MMEX will maintain records containing sufficient information to demonstrate compliance with the general requirements of 30 TAC §106.4 and the conditions of the specific PBRs claimed.

(3) keep all required records at the facility site. If however, the facility normally operates unattended, records must be maintained at an office within Texas having day-to-day operational control of the plant site;

MMEX will maintain all records needed to demonstrate compliance with this section at the Pecos County Refinery. If the Pecos County Refinery site operates unattended, records will be maintained at the nearest Texas Office with day-to-day operational control.

(4) make the records available in a reviewable format at the request of personnel from the commission or any air pollution control program having jurisdiction;

MMEX will maintain records in a reviewable format and will make them available to the TCEQ or any other air pollution control program having jurisdiction upon request.

(5) beginning April 1, 2002, keep records to support a compliance demonstration for any consecutive 12month period. Unless specifically required by a PBR, records regarding the quantity of air contaminants emitted by a facility to demonstrate compliance with §106.4 of this title prior to April 1, 2002 are not required under this section; and

As required, MMEX will maintain records to support compliance demonstrations for any consecutive 12-month period.

(6) for facilities located at sites designated as major in accordance with §122.10(13) of this title (relating to General Definitions) or subject to or potentially subject to any applicable federal requirement, retain all records demonstrating compliance for at least five years. For facilities located at all other sites, all records demonstrating compliance must be retained for at least two years. These record retention requirements supersede any retention conditions of an individual PBR.

MMEX will maintain records for a period of at least two years since the Pecos County Refinery is a major source under the Title V program.

This section provides a summary of the applicable state requirements and conditions outlined in the respective applicable PBRs. The table below summarizes the emission sources and the PBRs claimed to meet the emissions requirements. Regulatory text is provided in italics.

Emissions Source	EPN	PBR
		Claimed
Process Heater/Boiler	H-400 and D-950	106.183
Diesel	EG-1 and P-676B	106.511
Engines/Generators		
Sitewide Fugitives	FUG	106.261
Fugitive Dust	FUGDUST	106.261
Product Loading	LOAD1, LOAD2, LOAD3, and LOAD4	106.261
Storage Tanks	TK50 through TK59	106.478
Oil/Water Separation	WWTRT	106.532
Evaporation Pond	EVAPND	106.532
Vapor Combustor	VCU	106.261
MSS Flaring	MSS-FLR	106.492
MSS	MSS	106.263

8.1 REQUIREMENTS FOR BOILERS, HEATERS, AND OTHER COMBUSTION DEVICES (30 TAC §106.183) EFFECTIVE SEPTEMBER 4, 2000

Boilers, heaters, drying or curing ovens, furnaces, or other combustion units, but not including stationary internal combustion engines or turbines are permitted by rule, provided that the following conditions are met.

(1) The only emissions shall be products of combustion of the fuel.

The only emissions from combustion devices at the PCR will be products of the combustion of natural gas and off-gas.

- (2) The maximum heat input shall be 40 million British thermal unit (Btu) per hour with the fuel being:
 - (A) sweet natural gas;
 - (B) liquid petroleum gas;
 - (C) fuel gas containing no more than 0.1 grain of total sulfur compounds, calculated as sulfur, per dry standard cubic foot; or
 - (D) combinations of the fuels in subparagraphs (A) (C) of this paragraph.

The maximum heat input of any combustion device at the PCR will be less than 40 MMBtu/hr.

(3) Distillate fuel oil shall be fired as a backup fuel only. Firing shall be limited to 720 hours per year. The fuel oil shall contain less than 0.3% sulfur by weight and shall not be blended with waste oils or solvents.

The PCR does not plan to burn distillate fuel oil in any heater. However, the PCR will comply with the requirements of this citation if fuel oil is ever used to fuel any boiler or heater.

(4) All gas fired heaters and boilers with a heat input greater than ten million Btu per hour (higher heating value) shall be designed such that the emissions of nitrogen oxides shall not exceed 0.1 pounds per million Btu heat input.

The steam boiler (EPN D-950) authorized by this PBR have heat input value of 4 MMBtu/hr which is less than 10 MMBtu/hr (higher heating value); therefore, this requirement does not apply. PCR has a crude oil heater (EPN H-400) with heating value greater than 10 MMBtu/hr. Therefore, MMEX will comply with the emissions requirement of 0.1 lb/MMBtu for nitrogen oxides for crude oil heater.

(5) Records of hours of fuel oil firing and fuel oil purchases shall be maintained on-site on a two-year rolling retention period and made available upon request to the commission or any local air pollution control agency having jurisdiction.

The PCR does not plan to combust fuel oil in any boiler or heater. However, the PCR will comply with the requirements of this citation if fuel oil is burned in any boiler or heater.

8.2 REQUIREMENTS FOR FACILITIES (EMISSIONS LIMITATIONS) (30 TAC §106.261) EFFECTIVE NOVEMBER 1, 2003

- (a) Except as specified under subsection (b) of this section, facilities, or physical or operational changes to a facility, are permitted by rule provided that all of the following conditions of this section are satisfied.
 - (1) The facilities or changes shall be located at least 100 feet from any recreational area or residence or other structure not occupied or used solely by the owner or operator of the facilities or the owner of the property upon which the facilities are located.

The location of the emission sources associated with the proposed project are at least 100 ft from any recreational area, residence, or other structure not occupied or used solely by MMEX.

(2) Total new or increased emissions, including fugitives, shall not exceed 6.0 pounds per hour (lb/hr) and ten tons per year of the following materials: acetylene, argon, butane, crude oil, refinery petroleum fractions (except for pyrolysis naphthas and pyrolysis gasoline) containing less than ten volume percent benzene, carbon monoxide, cyclohexane, cyclohexene, cyclopentane, ethyl acetate, ethanol, ethyl ether, ethylene, fluorocarbons Numbers 11, 12, 13, 14, 21, 22, 23, 113, 114, 115, and 116, helium, isohexane, isopropyl alcohol, methyl acetylene, methyl chloroform, methyl cyclohexane, neon, nonane, oxides of nitrogen, propane, propyl alcohol, propylene, propyl ether, sulfur dioxide, alumina, calcium carbonate, calcium silicate, cellulose fiber, cement dust, emery dust, glycerin mist, gypsum, iron oxide dust, kaolin, limestone, magnesite, marble, pentaerythritol, plaster of paris, silicon, silicon carbide, starch, sucrose, zinc stearate, or zinc oxide.

Crude oil, refinery petroleum fractions (diesel, naphtha, and ATB) will be emitted from rail/truck loading and equipment fugitives.

(3) Total new or increased emissions, including fugitives, shall not exceed 1.0 lb/hr of any chemical having a limit value (L) greater than 200 milligrams per cubic meter (mg/m³) as listed and referenced in Table 262 of §106.262 of this title (relating to Facilities (Emission and Distance Limitations)) or of any other chemical not listed or referenced in Table 262. Emissions of a chemical with a limit value of less than 200 mg/m³ are not allowed under this section.

Total new or increased emissions, including fugitives, will not exceed 1.0 lb/hr for any chemical having a limit value greater than 200 mg/m³ as listed and referenced in Table 262 or any chemical not listed or referenced in Table 262.

(4) For physical changes or modifications to existing facilities, there shall be no changes to or additions of any air pollution abatement equipment.

The proposed project does not involve physical changes to or additions of air pollution abatement equipment.

(5) Visible emissions, except uncombined water, to the atmosphere from any point or fugitive source shall not exceed 5.0% opacity in any six-minute period.

Visible emissions from the proposed project will not exceed 5.0% opacity in any six-minute averaging period.

(6) For emission increases of five tons per year or greater, notification must be provided using Form PI-7 within ten days following the installation or modification of the facilities. The notification shall include a description of the project, calculations, data identifying specific chemical names, limit values, and a description of pollution control equipment, if any.

The total emissions authorized under this section are less than five tons per year; therefore, this requirement does not apply.

- (7) For emission increases of less than five tons per year, notification must be provided using either:
 - (A) Form PI-7 within ten days following the installation or modification of the facilities. The notification shall include a description of the project, calculations, data identifying specific chemical names, limit values, and a description of pollution control equipment, if any; or
 - (B) Form PI-7 by March 31 of the following year summarizing all uses of this permit by rule in the previous calendar year. This annual notification shall include a description of the project, calculations, data identifying specific chemical names, limit values, and a description of pollution control equipment, if any.

The total emissions authorized under this section are less than five tons per year. MMEX is submitting the Form PI-7-CERT and associated documentation within 10 days of the installation of the proposed facilities, and includes all items listed above, as required by the PBR.

- (b) The following are not authorized under this section:
 - (1) construction of a facility authorized in another section of this chapter or for which a standard permit is in effect; and

The project does not seek to authorize construction of a facility that is authorized in another section of this chapter or a standard permit.

(2) any change to any facility authorized under another section of this chapter or authorized under a standard permit

The project does not see to authorize any changes that are authorized under another section of this chapter or a standard permit.

8.3 REQUIREMENTS FOR ROUTINE MAINTENANCE, START-UP AND SHUTDOWN OF FACILITIES, AND TEMPORARY MAINTENANCE FACILITIES (30 TAC §106.263) EFFECTIVE NOVEMBER 1, 2001

(a) This section authorizes routine maintenance, start-up and shutdown of facilities, and specific temporary maintenance facilities except as specified in subsection (b) of this section.

MMEX is authorizing routine MSS in accordance with this rule.

- (b) The following are not authorized under this section:
 - (1) construction of any new or modified permanent facility;
 - (2) reconstruction under 40 Code of Federal Regulations, Part 60, New Source Performance Standards, Subpart A, §60.15 (relating to Reconstruction);
 - (3) physical or operational changes to a facility which increase capacity or production beyond previously existing performance levels or results in the emission of a new air contaminant;
 - (4) facilities and sources that are de minimis as allowed in §116.119 of this title (relating to De Minimis Facilities or Sources);
 - (5) piping fugitive emissions authorized under a permit or another permit by rule; and
 - (6) any emissions associated with operations claimed under the following sections of this chapter:
 - (A) §106.231 of this title (relating to Manufacturing, Refinishing, and Restoring Wood Products);
 - (B) §106.351 of this title (relating to Salt Water Disposal (Petroleum));
 - (C) §106.352 of this title (relating to Oil and Gas Production Facilities);
 - (D) §106.353 of this title (relating to Temporary Oil and Gas Facilities);
 - (E) §106.355 of this title (relating to Pipeline Metering, Purging, and Maintenance);
 - (F) §106.392 of this title (relating to Thermoset Resin Facilities);
 - (G) §106.418 of this title (relating to Printing Presses);
 - (H) §106.433 of this title (relating to Surface Coat Facility);
 - (I) §106.435 of this title (relating to Classic or Antique Automobile Restoration Facility);
 - (J) §106.436 of this title (relating to Auto Body Refinishing Facility); and
 - (K) §106.512 of this title (relating to Stationary Engines and Turbines).

The MSS activities included in this registration do not include any of the activities listed above.

(c) The following activities and facilities are authorized under this section:

- (1) routine maintenance activities which are those that are planned and predictable and ensure the continuous normal operation of a facility or control device or return a facility or control device to normal operating conditions;
- (2) routine start-ups and shutdowns which are those that are planned and predictable; and
- (3) temporary maintenance facilities which are constructed in conjunction with maintenance activities. Temporary maintenance facilities include only the following:
 - (A) facilities used for abrasive blasting, surface preparation, and surface coating on immovable fixed structures;
 - (B) facilities used for testing and repair of engines and turbines;
 - (C) compressors, pumps, or engines and associated pipes, valves, flanges, and connections, not operating as a replacement for an existing authorized unit;
 - (D) flares, vapor combustors, catalytic oxidizers, thermal oxidizers, carbon adsorption units, and other control devices used to control vent gases released during the degassing of immovable, fixed process vessels, storage vessels, and associated piping to atmospheric pressure, plus cleaning apparatus that will have or cause emissions;
 - (E) temporary piping required to bypass a unit or pipeline section undergoing maintenance; and
 - (F) liquid or gas-fired vaporizers used for the purpose of vaporizing inert gas.

The MSS activities included in this registration include only activities and facilities authorized under PBR §106.263(c).

- (d) Emissions from routine maintenance (excluding temporary maintenance facilities), start-up, and shutdown are:
 - (1) limited to 24-hour emission totals which are less than the reportable quantities defined in \$101.1(82) of this title (relating to Definitions) for individual occurrences;

The 24-hour emission totals will be calculated in the Reportable Quantity Review to demonstrate the emissions from the routine MSS activities in this PBR are less than the reportable quantities defined in §101.1(89).

(2) required to be authorized under Chapter 116 of this title (relating to Control of Air Pollution by Permits for New Construction or Modification) or comply with §101.7 and §101.11 of this title (relating to Maintenance, Start-up and Shutdown Reporting, Recordkeeping, and Operational Requirements, and Demonstrations) if unable to comply with paragraph (1) of this subsection or subsection (f) of this section; and

Emissions from the routine MSS activities in this PBR registration comply with paragraph (1) of this subsection and subsection (f) of this section.

(3) required to comply with subsection (f) of this section.

Emissions from the routine MSS activities in this PBR comply with subsection (f) of this section.

(e) In addition to the emission limits in subsection (f) of this section, specific temporary maintenance facilities as listed in subsection (c)(3) of this section must meet the following additional requirements:

- (1) flares or vapor combustors must meet the requirements of §106.492(1) and (2)(C) of this title (relating to Flares);
- (2) catalytic oxidizers must meet the requirements of §106.533(5)(C) of this title (relating to Water and Soil Remediation);
- (3) thermal oxidizers must meet the requirements of §106.493(2) and (3) of this title (relating to Direct Flame Incinerators);
- (4) carbon adsorption systems must meet the requirements of §106.533(5)(D) of this title;
- (5) other control devices used to control vents caused by the degassing of process vessels, storage vessels, and associated piping must have an overall vapor collection and destruction or removal efficiency of at least 90%;
- (6) any temporary maintenance facility that cannot meet all applicable limitations of this section must obtain authorization under Chapter 116 of this title; and
- (7) temporary maintenance facilities may not operate at a given location for longer than 180 consecutive days or the completion of a single project unless the facility is registered. If a single project requires more than 180 consecutive days to complete, the facilities must be registered using a PI-7 Form, along with documentation on the project. Registration and supporting documentation shall be submitted upon determining the length of the project will exceed 180 days, but no later than 180 days after the project begins.

PCR will have a temporary flare to control MSS emissions which will meet the requirements of \$106.492(1) and (2)(C).

(f) All emissions covered by this section are limited to, collectively and cumulatively, less than any applicable emission limit under §106.4(a)(1) - (3) of this title (relating to Requirements for Permitting by Rule) in any rolling 12-month period.

Emissions from the activities in this PBR comply with the emission limits of \$106.4(a)(1) - (3).

- (g) Facility owners or operators must retain records containing sufficient information to demonstrate compliance with this section and must include information listed in paragraphs (1) (4) of this subsection. Documentation must be separate and distinct from records maintained for any other air authorization. Records must identify the following for all maintenance, start-up, or shutdown activities and temporary maintenance facilities:
 - (1) the type and reason for the activity or facility construction;
 - (2) the processes and equipment involved;
 - (3) the date, time, and duration of the activity or facility operation; and
 - (4) the air contaminants and amounts which are emitted as a result of the activity or facility operation.

MMEX will maintain the records and documentation required under this subsection.

8.4 REQUIREMENTS FOR PIPELINE METERING, PURGING, AND MAINTENANCE (30 TAC 106.355) EFFECTIVE NOVEMBER 1, 2001

Metering, purging, and maintenance operations for gaseous and liquid petroleum pipelines (including ethylene, propylene, butylene, and butadiene pipelines), between separate sites as defined in §122.10(29) of this title

(relating to General Definitions), are permitted by rule provided that operations are conducted according to the following conditions of this section:

(1) Emissions of volatile organic compounds, except equipment leak fugitive emissions, are burned in a smokeless flare; or

Pipeline metering, purging, and maintenance operations for gaseous and liquid petroleum will be burned in a smokeless flare or will meet the emission limit under 30 TAC 106.355(2).

(2) Total uncontrolled emissions of any air contaminant except carbon dioxide, water, nitrogen, methane, ethane, hydrogen, and oxygen may not exceed one ton during any metering, purging, or maintenance operation. Uncontrolled butadiene emissions may not exceed 0.04 pounds per hour.

Total uncontrolled emissions of any air contaminant except carbon dioxide, water, nitrogen, methane, ethane, hydrogen, and oxygen will not exceed one ton during any metering, purging, or maintenance operation. The uncontrolled butadiene emissions will also not exceed 0.04 pounds per hour.

(3) Venting of sweet, natural gas from pipelines is exempt from paragraphs (1), (2), and (5) of this section. Operators may not vent gas in areas of known or suspected ignition sources.

MMEX will not vent gas in areas of known or suspected ignition sources.

(4) If any maintenance activity cannot meet all of the requirements of this section, or the emissions are not authorized under Chapter 116 of this title (relating to Control of Air Pollution by Permits for New Construction or Modification), then activities must comply with §101.7 and §101.11 of this title (relating to Maintenance, Start-up and Shutdown Reporting, Recordkeeping, and Operational Requirements; and Demonstrations).

All maintenance activities performed at PCR will meet the requirements of this section. The referenced citations, with regard to MSS requirements, under Chapter 116 have been removed from the regulations since the publication of this PBR. These citations are no longer available for use, as TCEQ requires that all MSS activities be authorized.

- (5) Records of all maintenance and purging emissions must be kept by the owner or operator of the facility or group of facilities at the nearest office within Texas having day-to-day operational control. These records must include all information required in this paragraph and in paragraphs (1) (4) of this section. Resetting flow meters (changing orifice plates, etc.) and calibration of meters are considered routine operations under this rule, not maintenance or purging. Records must identify the following for all maintenance and purging activities covered by this section:
 - (A) the type and reason for the activity;
 - (B) the processes and equipment involved;
 - (C) the date, time, and duration of the activity; and
 - (D) the air contaminants and amounts which are emitted as a result of the activity.

MMEX will maintain relevant records for maintenance and purging activities, as required under this section.

8.5 REQUIREMENTS FOR STORAGE TANK AND CHANGE OF SERVICE (30 TAC 106.478) EFFECTIVE SEPTEMBER 4, 2000

Any fixed or floating roof storage tank, or change of service in any tank, used to store chemicals or mixtures of chemicals shown in Table 478 in paragraph (8) of this section is permitted by rule, provided that all of the following conditions of this section are met:

(1) The tank shall be located at least 500 feet away from any recreational area or residence or other structure not occupied or used solely by the owner of the facility or the owner of the property upon which the facility is located.

The tanks at the PCR proposed to be authorized under PBR §106.478 will be located at least 500 feet away from any recreational area or residence or other structure not occupied or used solely by MMEX. A site plan demonstrating the site layout and tanks proposed to be authorized under this rule is included in Section 13.

(2) The true vapor pressure of the compound to be stored shall be less than 11.0 psia at the maximum storage temperature.

The true vapor pressure of the compounds stored in the tanks will be less than 11.0 psia at the maximum storage temperature.

- (3) For those compounds that have a true vapor pressure greater than 0.5 psia and less than 11.0 psia at the maximum storage temperature, any storage vessel larger than 40,000 gallons capacity shall be equipped with an internal floating cover or equivalent control.
 - (A) An open top tank containing an external floating roof using double seal technology shall be an approved control alternative equivalent to an internal floating cover tank, provided the primary seal consists of either a mechanical shoe seal or a liquid-mounted seal. Double seals having a vapor-mounted primary seal are an approved alternative for existing open top floating roof tanks undergoing a change of service.
 - (B) The floating cover or floating roof design shall incorporate sufficient flotation to conform to the requirements of American Petroleum Institute Code 650, Appendix C or an equivalent degree of flotation.

EPN	FIN	Tank Description	Tank Size, gal	Max. True Vapor Pressure, psia	Tank Type
TK50	TK50	Crude Oil Tank	3,150,000	10	Internal Floating Roof
TK51	TK51	Crude Oil Tank	3,150,000	10	Internal Floating Roof
TK52	TK52	Naphtha Tank	1,050,000	11	Internal Floating Roof
TK53	TK53	Naphtha Tank	1,050,000	11	Internal Floating Roof
TK54	TK54	Diesel Tank	1,260,000	0.02	Vertical Fixed Cone Roof

The following storage vessels are proposed to be authorized under PBR §106.478.

EPN	FIN	Tank Description	Tank Size, gal	Max. True Vapor Pressure, psia	Tank Type
TK55	TK55	Diesel Tank	1,260,000	0.02	Vertical Fixed Cone Roof
		Residual/ATB	1,050,000	0.0015	
TK56	TK56	Tank			Vertical Fixed Cone Roof
		Residual/ATB	1,050,000	0.0015	
TK57	TK57	Tank			Vertical Fixed Cone Roof
TK59	TK59	Slop Tank	84,000	4.76	Internal Floating Roof

The storage tanks, EPNs TK50, TK51, TK52, TK 53, and TK59 will have storage capacity larger than 40,000 gallons and contain products that have a true vapor pressure greater than 0.5 psia and less than 11.0 psia at the maximum storage temperature. These tanks will be equipment with internal floating roofs. The floating roofs will incorporate sufficient flotation to conform to the requirements of American Petroleum Institute Code 650, Appendix C.

Although storage tanks, EPNs TK54, TK55, TK56, and TK 57 will have storage capacity larger than 40,000 gallons; they will not contain products that have a true vapor pressure greater than 0.5 psia at the maximum storage temperature. Therefore, these tanks are not subject to control requirements and will be vertical fixed roof tanks

(4) Compounds with a true vapor pressure of 0.5 psia or less at the maximum storage temperature may be stored in a fixed roof or cone roof tank which includes a submerged fill pipe or utilizes bottom loading.

As stated above, storage tanks, EPNs TK54, TK55, TK56, and TK 57 will have compounds with a true vapor pressure of 0.5 psia or less at the maximum storage temperature. Therefore, they will be stored in fixed roof tanks which include submerged fill pipes.

(5) For fixed or cone roof tanks having no internal floating cover, all uninsulated tank exterior surfaces exposed to the sun shall be painted chalk white except where a dark color is necessary to help the tank absorb or retain heat in order to maintain the material in the tank in a liquid state.

All the vertical fixed roof tanks will have all uninsulated tank exterior surfaces exposed to the sun painted chalk white.

(6) Emissions shall be calculated by methods specified in Section 4.3 of the current edition of the United States Environmental Protection Agency Publication AP-42. This document may be obtained from the Superintendent of Documents, Washington D.C. 20402. It is Stock Number 0550000251-7, Volume I.

All emissions have been prepared using the most recent version of the United States Environmental Protection Agency Publication AP-42 publication.

(7) Before construction begins, storage tanks of 25,000 gallons or greater capacity and located in a designated nonattainment area for ozone shall be registered with the commission's Office of Permitting, Remediation, and Registration in Austin using Form PI-7. The registration shall include a list of all tanks, calculated emissions for each carbon compound in tons per year for each tank, and a Table 7 of Form PI-2 for each different tank design.

The PCR is located in Pecos County which is not a designated nonattainment area for ozone; therefore, the requirements of PBR §106.478(7) do not apply.

(8) Mixtures of the chemicals listed in Table 478 which contain more than a total of 1.0% by volume of all other chemicals not listed in Table 478 are not covered by this section.

No mixtures of the chemicals listed in Table 478 which contain more than a total of 1.0% by volume of all other chemicals not listed in Table 478 will be stored in the tanks authorized under PBR §106.478 at the PCR.

8.6 REQUIREMENTS FOR FLARES (30 TAC §106.492) EFFECTIVE SEPTEMBER 4, 2000

Smokeless gas flares which meet the following conditions of this section are permitted by rule:

- (1) design requirements.
 - (A) The flare shall be equipped with a flare tip designed to provide good mixing with air, flame stability, and a tip velocity less than 60 feet per second (ft/sec) for gases having a lower heating value less than 1,000 British thermal units per cubic foot (Btu/ft³) or a tip velocity less than 400 ft/sec for gases having a lower heating value greater than 1,000 Btu/ft³.

The flare will be equipped with a flare tip designed to meet the requirements as noted above.

(B) The flare shall be equipped with a continuously burning pilot or other automatic ignition system that assures gas ignition and provides immediate notification of appropriate personnel when the ignition system ceases to function. A gas flare which emits no more than 4.0 pounds per hour (lb/hr) of reduced sulfur compounds, excluding sulfur oxides, is exempted from the immediate notification requirement, provided the emission point height meets the requirements of §106.352(4) of this title (relating to Oil and Gas Production Facilities).

The flare will be equipped with a continuously burning pilot and/or automatic ignition system. The flare emits less than 4.0 lb/hr of reduced sulfur compounds, excluding sulfur oxides, and meters the height requirements of §106.352(4). Therefore, the flare is exempt from the immediate notification requirements above.

(C) A flare which burns gases containing more than 24 parts per million by volume (ppmv) of sulfur, chlorine, or compounds containing either element shall be located at least 1/4 mile from any recreational area or residence or other structure not occupied or used solely by the owner or operator of the flare or the owner of the property upon which the flare is located.

The flare will not burn gases containing more than 24 ppmv of sulfur, chlorine, or compounds containing either element; therefore, there are no restrictions on the location of the flare.

(D) The heat release of a flare which emits sulfur dioxide (SO_2) or hydrogen chloride (HCl) shall be greater than or equal to the values calculated based on the methodology in 30 TAC 106.492(1)(D).

The flare heat release will be greater than or equal to the values calculated based on this section.

- (2) operational conditions.
 - (A) The flare shall burn a combustible mixture of gases containing only carbon, hydrogen, nitrogen, oxygen, sulfur, chlorine, or compounds derived from these elements. When the gas stream to be burned has a net or lower heating value of more than 200 Btu/ft³ prior to the addition of air, it may be considered combustible.

The flare will always burn a combustible mixture of gases as specified in this section.

(B) A flare which burns gases containing more than 24 ppmv of sulfur, chlorine, or compounds containing either element shall be registered with the commission's Office of Permitting, Remediation, and Registration in Austin using Form PI-7 prior to construction of a new flare or prior to the use of an existing flare for the new service.

The flare will not burn gases containing more than 24 ppmv of sulfur, chlorine, or compounds containing either element; therefore, registration of the source is not required by TCEQ. However, MMEX is voluntarily registering and certifying emissions from this emissions source.

(C) Under no circumstances shall liquids be burned in the flare.

No liquids will be burned in the flare.

8.7 REQUIREMENTS FOR PORTABLE AND EMERGENCY ENGINES AND TURBINES (30 TAC §106.511) EFFECTIVE SEPTEMBER 4, 2000

Internal combustion engine and gas turbine driven compressors, electric generator sets, and water pumps, used only for portable, emergency, and/or standby services are permitted by rule, provided that the maximum annual operating hours shall not exceed 10% of the normal annual operating schedule of the primary equipment; and all electric motors. For purpose of this section, "standby" means to be used as a "substitute for" and not "in addition to" other equipment.

The emergency engine (EPN EG-1 and P-676B) will not operate more than 10% of the normal annual operating schedule of the primary equipment; therefore, this engine is permitted by rule.

8.8 REQUIREMENTS FOR WATER AND WASTEWATER TREATMENT (30 TAC § 106.532) EFFECTIVE SEPTEMBER 4, 2000

- (1) The facility performs only the following functions:
 - (A) disinfection;(B) softening;(C) filtration;
 - (D) flocculation;
 - (E) stabilization;
 - (F) taste and odor control;
 - (G) clarification;
 - (H) carbonation;

(I) sedimentation;

(J) neutralization;

(K) chlorine removal;

(L) activated sludge treatment, anaerobic treatment, and associated control of gases from these treatments;

(M) aerobic oxidation/biodegration using oxygen or peroxide in the absence of nitrogen or other gas that would cause stripping of volaltile organic compounds (VOC) from the water;

(N) stripping VOC, ammonia, or other air contaminants from the water with air or other gas, provided the stripped gases are controlled with an abatement system that meets the requirements of §106.533(5) of this title (relating to Water and Soil Remediation). For ammonia or hydrogen chloride (HCl) or other acid gas emissions, abatement may include a water or caustic scrubbing system as a means of complying with this section. Final emissions of HCl resulting from combustion of chlorine or chlorine-containing compounds shall not exceed 0.1 pounds per hour;

(0) liquid phase separation of VOC and water in which:

(i) the sum of the partial pressures of all species of VOC in any sample is less than 1.5 psia; or (ii) the separator is enclosed and emissions are vented through an emission abatement system meeting the requirements specified previously for stripped VOC and ammonia;

The wastewater treatment at the PCR has an enclosed oil/water separator (EPN WWTRT). The emissions from oil/water separator will be vented through a carbon adsorption system (CAS) to the atmosphere that will meet the requirements of §106.533(g)(5). PCR will also have stabilization pond (EPN EVAPND) which performs the function in the above list.

(2) Chlorine or sulfur dioxide (SO₂) shall be used only in containers approved by the United States Department of Transportation and emissions of chlorine or SO₂ from treatment of water or decontamination of equipment at any water treatment plant shall not exceed ten tons per year.

The wastewater treatment at the PCR does not process or emit chlorine or sulfur dioxide (SO₂).

(3) The following shall not be permitted by rule under this section:

- (A) gas stripping or aeration facilities where VOC or other air contaminants are stripped from water directly to the atmosphere;
- (B) disposal facilities using land surface treatment;
- (C) surface facilities associated with injection wells;
- (D) cooling towers in which VOC or other air contaminants may be stripped to the atmosphere.

The wastewater treatment at the PCR does not include any of the above-mentioned facilities or activities.

This section summarizes the state and federal applicable requirements for the proposed MSS activities at the Pecos County Refinery.

9.1 STATE REQUIREMENTS REVIEW

- > 30 TAC Chapter 111 Control of Air Pollution from Visible Emissions and Particulate Matter
 - The activities proposed in this PBR registration do not result in significant emissions of particulate matter or visible emissions; therefore, the site will comply with the limits of this chapter.
- > 30 TAC Chapter 112 Control of Air Pollution from Sulfur Compounds
 - The activities at the PCR proposed in this registration are not subject to any citations within Chapter 112, Subchapter A because there will be no sulfuric acid plants, sulfur recovery plants, solid fossil fuel-fired steam generators, or nonferrous smelter processes.
 - The PCR handles sweet crude oil and natural gas. Although the gas could contain trace amounts of hydrogen sulfide, the amounts are not sufficient to pose risk of exceeding the applicable standards.
- > 30 TAC Chapter 113 Standards of Performance for HAPs and for Designated Facilities and Pollutants
 - There are 40 CFR Part 63 MACT requirements for engines and boilers applicable to the proposed activities. Therefore, PCR is subject to applicable requirements of this chapter.
- > 30 TAC Chapter 115 Control of Air Pollution from Volatile Organic Compounds
 - Under Chapter 115 Subchapter A §115.10 definitions, Pecos County is not considered a covered attainment county; therefore, the PCR is not subject to this chapter.
- > 30 TAC Chapter 117 Control of Air Pollution from Nitrogen Compounds
 - The sources at the PCR are not affected sources under this chapter; therefore, the requirements of this chapter do not apply.

9.2 FEDERAL REQUIREMENTS REVIEW

9.1.1. NSPS Subpart A - General Provisions

Any source subject to a source-specific NSPS is also subject to the general provisions of NSPS Subpart A. Unless specifically excluded by the source-specific NSPS, Subpart A generally requires initial construction notification, initial start-up notification, performance tests, performance test initial notification, general monitoring requirements, general recordkeeping requirements, semiannual monitoring, and/or excess emission reports. Because sources at PCR will be subject to at least one NSPS Subpart, PCR will comply with the general requirements in NSPS Subpart A.

9.1.2. NSPS Subpart Dc - Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

This subpart applies to steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989 and that has a maximum design heat input capacity of 29 MW (100 MMBtu/hr) or

less, but greater than or equal to 2.9 MW (10 MMBtu/hr). PCR uses process heater not steam generating unit. Therefore, MMEX is not subject to the requirements of Subpart Dc.

9.1.3. NSPS Subpart Ja - Standards of Performance for Petroleum Refineries for Which Construction, Reconstruction, or Modification Commenced After May 14, 2007

This subpart applies to process heaters and flares constructed after May 14, 2007 and June 24, 2008, respectively. MMEX will comply with all applicable requirements in Subpart Ja.

9.1.4. NSPS Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984

This subpart applies to tanks with a storage capacity of greater than 19,813 gallons. All tanks except diesel fuel tank (EPN T-58) are greater than 19,813 gallons. MMEX will comply with applicable requirements in Subpart Kb.

9.1.5. NSPS GGGa - Standards of Performance for Equipment Leaks of VOC in Petroleum Refineries for Which Construction, Reconstruction, or Modification Commenced After November 7, 2006

This subpart applies to compressors and process units within a refinery constructed after November 7, 2006. PCR will comply with all applicable requirements in Subpart GGGa.

9.1.6. NSPS Subpart IIII - Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

NSPS Subpart IIII regulates criteria pollutant emissions from stationary compression ignition (CI) internal combustion engines (ICE) for model year 2007 or later. The emergency generator engine will be subject to requirements in §60.4205 and fire pump (emergency) engine model will be subject to model year requirement listed in Table 4 of NSPS Subpart IIII.

The diesel emergency generator engine with a displacement of greater than or equal to 30 liters per cylinder will be subject to the following NOx emission standards for engines installed on or after January 1, 2012³

- > <u>NOx</u>: 10.7 g/hp-hr for engine speed less than 130 rpm;
- > <u>NO_X:</u> 33 x n^{-0.23} g/hp-hr where n (maximum engine speed) is for engine speed 130 or more but less than 2,000 rpm; and
- > <u>NOx:</u> 5.7 g/hp-hr for engine speed greater than or equal to 2,000 rpm.

The diesel emergency generator engine will be subject to the following PM emission standards⁴

> <u>PM:</u> Reduce by 60 percent or more, or limit the emissions of PM emissions to 0.30 g/HP-hr.

The fire pump (emergency) engine with a displacement of less than 30 liters per cylinder will be subject the emission standards in Table 4 of NSPS Subpart IIII 5

³ 40 CFR 60.4205(d)(2)

^{4 40} CFR 60.4205(d)(3)

^{5 40} CFR 60.4205(c)

Maximum Engine Power	Model Year	NMHC + NOx, g/hp-hr	PM, g/hp-hr
300≤HP<600	2009+	3.0	0.15

PCR will comply with the requirements by installing non-certified generators pursuant to 40 CFR §60.4211(g), including conducting an initial performance test within one year of startup. 40 CFR §60.4211(e)(2) requires the submittal of a copy of the performance test within 60 days of its completion.

Because the engines will be used as emergency engines, a non-resettable hour meter is required.⁶ Per 40 CFR §60.4211(f)(1)-(3), emergency engines are allowed to be operated according to the following time constraints:

- > There is no time limit on use in emergency situations.
- The emergency ICE can operate for up to 100 hours per year total for maintenance checks and readiness testing, provided that the tests are recommended by federal, state, or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine; and
- > The emergency ICE can operate for up to 50 hours per calendar year in non-emergency situations.

9.2. 40 CFR PART 61 - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

9.2.1. NESHAP Subpart A - General Provisions

This subpart applies to any site that has applicable NESHAP Subparts under 40 CFR 61. The Pecos County Refinery is subject to 40 CFR Part 61 FF - National Emission Standard for Benzene Waste Operations. Therefore, PCR will comply with the general requirements in NESHAP Subpart A.

9.2.2. NESHAP Subpart FF - National Emission Standard for Benzene Waste Operations

This subpart applies to owners and operators of petroleum refineries. MMEX will comply with all applicable requirements in Subpart FF.

9.3. 40 CFR PART 63 - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (MACT)

9.3.1. 40 CFR Part 63, Subpart A - General Provisions

This subpart applies to any site that has an applicable MACT Subpart. Because the Pecos County Refinery will be subject to at least one MACT Subpart, PCR will comply with the general requirements in MACT Subpart A.

9.3.2. 40 CFR Part 63, Subpart ZZZZ - National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

MACT Subpart ZZZZ, NESHAP for Stationary Reciprocating Internal Combustion Engines, applies to reciprocating internal combustion engines (RICE) located at a major or area source of HAP emissions. At area sources, engines for which construction commenced on or after June 12, 2006, are considered new stationary

⁶ 40 CFR 60.4237(a)

RICE.⁷ MMEX is proposing to install diesel powered emergency generator and fire water pump engine, which will be classified as a new units.

The emergency generator and fire water pump engine will be subject to 40 CFR 60 (NSPS) Subpart IIII. Per 40 CFR §63.6590(c), a new SI RICE at an area source must meet the requirements of 40 CFR 63 Subpart ZZZZ by meeting the requirements of 40 CFR 60 Subpart IIII for SI ICEs. No further requirements apply for such engines under the RICE MACT. Thus, MMEX will comply with all applicable requirements of 40 CFR 63 Subpart ZZZZ and 40 CFR 60 Subpart IIII for the emergency generator and fire water pump engine.

9.3.3. 40 CFR 63 Subpart DDDDD - Industrial, Commercial, and Institutional Boilers and Process Heaters Major Sources

40 CFR 63 Subpart DDDDD, also known as Boiler MACT, regulates HAP emissions from boilers and process heaters at sites that are a major source of HAP. While the PCR will have a small boiler and a process heater, the facility will be an area source of HAP; therefore, major source Boiler MACT does not apply.

9.3.4. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers Area Sources

Subpart JJJJJJ regulates HAP emissions from boilers at area sources of HAP. The rule defines a boiler as:⁸

An enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water. Waste heat boilers, process heaters, and autoclaves are excluded from the definition of *Boiler*.

Per 40 CFR 63.11195, gas-fired boilers are not subject to Subpart JJJJJJ. PCR will be an area source of HAP. PCR will have one gas-fired steam boiler (EPN D-950) and a process heater (EPN H-400). Both the gas-fired boiler and process heater will not be subject to Subpart JJJJJJ.

⁷ 40 CFR 63.63.6590(a)(1)(iii) and (a)(2)(iii)

^{8 40} CFR 63.11237

10. CRUDE ANALYSIS

Crude Oil Whole Properties and Light Ends

Crude	Diamond Rogers Blue	
Country of Origin	USA	
API Gravity	43.7	
Specific Gravity	0.8077	
Crude % Sulfur	0.03%	
RVP, psi	6.96	

Assay Source	MMEX Resources	
Assay Date	5-Jul-17	

Light Ends (% of whole crude)

	<u>Wt%</u>	<u>Sp. Gr.</u>	<u>LV%</u>	<u>BP, °F</u>
C1	0.00%	0.3000	0.00%	(259)
C2	0.03%	0.5210	0.05%	(127)
C3	0.41%	0.5070	0.65%	(44)
iC4	0.23%	0.5629	0.33%	11
nC4	1.29%	0.5840	1.78%	31
neoPentane	0.00%	0.5974	0.00%	49
TOTAL	1.96%	0.5626	2.81%	

Benzene Precursors (% of whole crude)

	<u>Wt%</u>	<u>Sp. Gr.</u>	<u>LV%</u>
Benzene	0.17%	0.8829	0.16%
МСР	1.07%	0.7540	1.15%
Cyclohex	1.09%	0.7385	1.19%
TOTAL	2.33%	0.8645	2.49%

<u>Wt%</u> <u>LV%</u> <u>BP, °F</u> Sp. Gr. 0.6247 Isopentane 1.01% 1.31% 82 n-Petane 1.56% 0.6311 2.00% 97 Cyclopentane 0.23% 0.7603 0.24% 121 TOTAL 2.80% 0.6376 3.55%

Crude FVT °F 1,350

Whole crude properties

Pentanes (% of whole crude)

Nickel	wppm	0.3
Vanadium	wppm	0.1
Con Carbon	wt%	0.2%
C5 Insol.	wt%	0.8%
TAN	mg/g KOH	0.00

- 11. TCEQ CHECKLISTS
 - PBR 106.4 Checklist
 - PBR 106.183 Checklist
 - PBR 106.261 Checklist
 - PBR 106.263 Checklist
 - PBR 106.355 Checklist
 - PBR 106.476 Checklist
 - PBR 106.478 Checklist
 - PBR 106.492 Checklist
 - PBR 106.511 Checklist

Texas Commission on Environmental Quality Permit by Rule Applicability Checklist Title 30 Texas Administrative Code § 106.4

The following checklist was developed by the Texas Commission on Environmental Quality (TCEQ), **Air Permits Division**, to assist applicants in determining whether or not a facility meets all of the applicable requirements. Before claiming a specific Permit by Rule (PBR), a facility must first meet all of the requirements of **Title 30 Texas Administrative Code § 106.4** (30 TAC § 106.4), "Requirements for Permitting by Rule." Only then can the applicant proceed with addressing requirements of the specific Permit by Rule being claimed.

The use of this checklist is not mandatory; however, it is the responsibility of each applicant to show how a facility being claimed under a PBR meets the general requirements of 30 TAC § 106.4 and also the specific requirements of the PBR being claimed. If all PBR requirements cannot be met, a facility will not be allowed to operate under the PBR and an application for a construction permit may be required under 30 TAC § 116.110(a).

Registration of a facility under a PBR can be performed by completing **Form PI-<u>7</u>** (Registration for Permits by Rule) or **Form PI-7-CERT** (Certification and Registration for Permits by Rule). The appropriate checklist should accompany the registration form. Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the question number. The PBR forms, tables, checklists, and guidance documents are available from the TCEQ, Air Permits Division Web site at: www.tceq.texas.gov/permitting/air/nav/air_pbr.html.

1. 30 TAC § 106.4(a)(1) and (4): Emission limit	ts		
List emissions in tpy for each facility (add additional pages or table if needed): See attached emission calculations.			
• Are the SO ₂ , PM ₁₀ , VOC, or other air contaminant in this PBR submittal less than 25 tpy?	emissions claimed for each facility	XES INO	
 Are the NO_x and CO emissions claimed for each f than 250 tpy? 	acility in this PBR submittal less	YES 🗌 NO	
<i>If the answer to both is "Yes," continue to the question below. If the answer to either question is "No," a</i> PBR <i>cannot be claimed.</i>			
Has any facility at the property had public notice under 30 TAC Section 116 for a regular permit o include public notice for voluntary emission redu existing facility permits, or federal operating per	r permit renewal? (This does not action permits, grandfathered	☐ YES ⊠ NO	
If "Yes," skip to Section 2. If "No," continue to the que	stions below.		
If the site has had no public notice, please answer th	e following:		
 Are the SO₂, PM₁₀, VOC, or other emissions claime submittal less than 25 tpy? 	ed for all facilities in this PBR	YES 🗌 NO	
 Are the NO_x and CO emissions claimed for all fac than 250 tpy? 	ilities in this PBR submittal less	YES 🗌 NO	
If the answer to both questions is "Yes," continue to S	If the answer to both questions is "Yes," continue to Section 2.		
<i>If the answer to either question is "No," a PBR cannot be claimed. A permit will be required under Chapter 116.</i>			

Permit by Rule Applicability Checklist Title 30 Texas Administrative Code § 106

2. 30 TAC § 106.4(a)(2): Nonattainment check			
• Are the facilities to be claimed under this PBR located in a designated ozone nonattainment county?	🗆 YES 🖾 NO		
If "Yes," please indicate which county by checking the appropriate box to the right.			
(Marginal) - Hardin, Jefferson, and Orange counties:	□ BPA		
(Moderate) - Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and Waller counties:	HGA HGA		
(Moderate) - Collin, Dallas, Denton, Ellis, Johnson, Kaufman, Parker, Rockwall, Tarrant, and Wise counties:	DFW		
<i>If "Yes," to any of the above, continue to the next question. If "No," continue to Section 3.</i>			
Does this project trigger a nonattainment review?	☐ YES ☐ NO		
Does this project trigger a nonattainment review?			
• Is the project's potential to emit (PTE) for emissions of VOC or NO _x increasing by 100 tpy or more? <i>PTE is the maximum capacity of a stationary source to emit any air pollutant under its worst-case physical and operational design unless limited by a permit, rules, or made federally enforceable by a certification.</i>	☐ YES ☐ NO		
• Is the site an existing major nonattainment site and are the emissions of VOC or NO _x increasing by 40 tpy or more?	☐ YES ☐ NO		
If needed, attach contemporaneous netting calculations per nonattainment guidance.			
Additional information can be found at: www.tceq.texas.gov/permitting/air/forms/newsourcereview/tables/nsr_table8.html and www.tceq.texas.gov/permitting/air/nav/air_docs_newsource.html			
If "Yes," to any of the above, the project is a major source or a major modification and a PBR may not be used . A Nonattainment Permit review must be completed to authorize this project. If "No," continue to Section 3.			
3. 30 TAC § 106.4(a)(3): Prevention of Significant Deterioration (PSD) check			
Does this project trigger a review under PSD rules?			
To determine the answer, review the information below:			
• Are emissions of any regulated criteria pollutant increasing by 100 tpy of any criteria pollutant at a named source?	🗌 YES 🖾 NO		
• Are emissions of any criteria pollutant increasing by 250 tpy of any criteria pollutant at an unnamed source?	🗌 YES 🖾 NO		
• Are emissions increasing above significance levels at an existing major site?	🗆 YES 🖾 NO		
PSD information can be found at: www.tceq.texas.gov/assets/public/permitting/air/Forms/NewSourceReview/Tables/10173tbl.pdf and www.tceq.texas.gov/permitting/air/nav/air_docs_newsource.html If "Yes," to any of the above, a PBR may not be used . A PSD Permit review must be completed to authorize the project.			
If "No," continue to Section 4.			

Permit by Rule Applicability Checklist Title 30 Texas Administrative Code § 106

4. 30 TAC § 106.4(a(6): Federal	Requirements			
	eet applicable requirements of Title 40 Code of 60, New Source Performance Standards (NSPS)?	YES 🗌 NO 🗌 NA		
<i>If "Yes," which Subparts are applicable?</i>	Kb, Ja, GGGa, IIII			
	Hazardous Air Pollutants Maximum Achievable Control Technology (MACT)			
<i>If "Yes," which Subparts are applicable?</i>	FF			
	eet applicable requirements of 40 CFR Part 61, Hazardous Air Pollutants (NESHAPs)?	YES 🗌 NO 🗌 NA		
<i>If "Yes," which Subparts are applicable?</i>	ZZZZ			
If "Yes" to any of the above, please atta	ach a discussion of how the facilities will meet any	applicable standards.		
5. 30 TAC § 106.4(a)(7): PBR pro	bhibition check			
• Are there any air permits at the sit restrict the use of PBRs?	e containing conditions which prohibit or	🗌 YES 🖾 NO		
<i>If "Yes," PBRs may not be used or their use must meet the restrictions of the permit. A new permit or permit amendment may be required.</i>				
List permit number(s):				
6. 30 TAC § 106.4(a)(8): NO _x Caj	o and Trade			
 Is the facility located in Harris, Brazoria, Chambers, Fort Bend, Galveston, Liberty, Montgomery, or Waller County? 				
If "Yes," answer the question below	If "Yes," answer the question below. If "No," continue to Section 7.			
Will the proposed facility or group of facilities obtain required allowances for NO_x YES \square NO if they are subject to 30 TAC Chapter 101, Subchapter H, Division 3 (relating to the Mass Emissions Cap and Trade Program)?				

Permit by Rule Applicability Checklist Title 30 Texas Administrative Code § 106

7. Highly Reactive Volatile Organic Compounds (HRVOC) check				
Is the facility located in Harris County?		🗌 YES 🖾 NO		
If "Yes," answer the next question. If "No," skip to the box belo	<i><i>ow.</i></i>			
• Will the project be constructed after June 1, 2006?		I YES I NO		
If "Yes," answer the next question. If "No," skip to the box belo	<i><i>ow.</i></i>			
• Will one or more of the following HRVOC be emitted as a project?	part of this	☐ YES ☐ NO		
<i>If "Yes," complete the information below:</i>				
	lb/hr	tpy		
▶ 1,3-butadiene				
 all isomers of butene (e.g., isobutene [2-methylpropene or isobutylene]) 				
 alpha-butylene (ethylethylene) 				
 beta-butylene (dimethylethylene, including both cis- and trans-isomers) 				
► ethylene				
▶ propylene				
Is the facility located in Brazoria, Chambers, Fort Bend, Galveston, Liberty, ☐ YES ⊠ NO Montgomery, or Waller County?				
If "Yes," answer the next question. If "No," the checklist is con	nplete.			
• Will the project be constructed after June 1, 2006?		I YES I NO		
If "Yes," answer the next question. If "No," the checklist is con	nplete.			
• Will one or more of the following HRVOC be emitted as a part of this Project?				
<i>If "Yes," complete the information below:</i>	If "Yes," complete the information below:			
	lb//hr	tpy		
▶ ethylene				
▶ propylene				

Boilers, Heaters, and Other Combustion Devices Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.183

Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the rule number. The PBR forms, tables, checklists, and guidance documents are available from the TCEQ, Air Permits Division Web site at: www.tceq.texas.gov/permitting/air/nav/air_pbr.html.

This PBR (§ 106.183) **does not require registration**. However, you may register the facility and its emissions with the commission's Office of Air in Austin. The facility may be registered by completing Form PI-7, "Registration for Permits by Rule," or Form PI-7-CERT, "Registration and Certification for Permits by Rule." This checklist should accompany the registration form.

For additional assistance with your application, including resources to help calculate your emissions, please visit the Small Business and Local Government Assistance (SBLGA) webpage at the following link: www.TexasEnviroHelp.org

	Please (Complete the Following:		
Will the equipment to be authorized include only boilers, heaters, drying or curing ovens, XES NO furnaces, or other combustion units?				
If "NO," this PBR canne	ot be claimed.			
Note: Stationary internal combustion engines and turbines may require registration under 30 TAC § 106.512 . A § 106.512 Checklist is available to help verify compliance with the requirements.				
Check all that apply:				
boilers	igtimes heaters	☐ drying or curing ovens ☐	furnaces	
🗌 other combustion ur	nit (If other please spec	cify):		
Have you included a Ta Heaters) with the regi		Units) or a Table 6 (Boilers and	🖾 YES 🗌 NO	
🔀 Table 4		Table 6		
Are the only emissions	from the facility produ	cts of combustion?	🖂 YES 🗌 NO	
If "NO," the facility doe	s not qualify for this P	BR.		
What is the maximum h	neat input of the facility	y? (MBtu/hr.) 39 MMBtu/hr		
If the facility has a heat input greater than 10 MMBtu/hr (higher heating value), what is the emission rate of nitrogen oxides? (1b/MMBtu) 0.98 MMBtu/hr				
What type of fuel is use	d? (Check all that apply	y)		
🖾 sweet natural gas 🛛] liquid petroleum gas	s \Box fuel gas with \leq 0.1 grain total sulfu	compounds per dscf	
Is the distillate fuel oil ι	ised only as a backup f	uel?	🗌 YES 🖂 NO	
Total hours of operation	n (hr./yr): 8760			
Note: If distillate fuel	oil is used, firing cann	ot exceed 720 hours per year.		
<i>If "YES," please continu If "NO," the remaining</i>	ie. questions do not apply	ν.		

Boilers, Heaters, and Other Combustion Devices Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.183

Please Complete the Following:	
What is sulfur content of the distillate fuel oil (% sulfur by weight)?	
Is the distillate fuel oil blended with waste oils or solvents?	🗌 YES 🗌 NO
Will records of hours of fuel oil firing and fuel oil purchases be maintained on-site for at least two years and made available upon request to the commission or any local air pollution control program having jurisdiction?	🗌 YES 🗌 NO
Other Applicable Rules and Regulations If assistance is needed in determining other applicable rules and regulation pl Rule Registrations Section, Air Permits Division at (512) 239-1250.	ease contact the
Is the facility subject to 30 TAC Chapter 117, Subchapter B?	🗌 YES 🖂 NO
Why or Why Not: Heaters are not steam generating units.	
Is the facility subject to 30 TAC Chapter 117, Subchapter D?	🗌 YES 🖂 NO
Why or Why Not: Heaters are not steam generating units.	
Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	🗌 YES 🖂 NO
Why or Why Not: Heaters are not steam generating units.	
Is the facility subject to 40 CFR Part 60, NSPS Subpart Da?	🗌 YES 🖂 NO
Why or Why Not: Heaters are not steam generating units.	
Is the facility subject to 40 CFR Part 60, NSPS Subpart Db?	🗌 YES 🖾 NO
Why or Why Not: Heaters are not steam generating units.	
Is the facility subject to 40 CFR Part 60, NSPS Subpart Dc?	\boxtimes YES \boxtimes NO
Why or Why Not: Natural gas fired heater (EPN H-400) will have a maximum de capacity of greater than 10 MMBtu/hr.	sign heat input
Is the facility subject to 40 CFR Part 60, NSPS Subpart UUU?	☐ YES ⊠NO
Why or Why Not: Heaters are not used as dryer at a mineral processing plant.	

Boilers, Heaters, and Other Combustion Devices Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.183

Record Keeping: In order to demonstrate compliance with the general and specific requirements of this PBR, records of the hours of fuel oil firing and fuel oil purchases must be maintained on-site for at least two years and made immediately available upon request to the commission or any local air pollution control program having jurisdiction. The registrant should also become familiar with the additional record keeping requirements in 30 TAC § 106.8. The records must be made available immediately upon request to the commission or any air pollution control program having jurisdiction. If you have any question about the type of records that should be maintained, contact the Air Program in the TCEQ Regional Office for the region in which the site is located.

Recommended Calculation Method: Emission estimates may be made using the calculation method described in the TCEQ Guidance for Boilers and Heaters at:

www.tceq.texas.gov/permitting/air/nav/nsr_fac_index.html and/or use the emission factors for each air contaminant from the EPA Compilation of Air Pollutant Emission Factors (AP-42), Fifth Edition, Volume 1, Chapter 11: External Combustion Sources at: www.epa.gov/ttn/chief/ap42/index.html. If sufficient records are maintained on-site and all requirements are being met, the registrant and the TCEQ will be able to establish these emission rates if needed.

Texas Commission on Enviromental Quality Title 30 Texas Administrative Code § 106.261 Permit By Rule (PBR) Checklist Facilities (Emission Limitations)

The following checklist is designed to help you confirm that you meet Title 30 Texas Administrative Code § 106.261 (30 TAC § 106.261) requirements. If you do not meet all the requirements, you may alter the project design or operation in such a way that all the requirements of the PBR are met or you may obtain a construction permit. The PBR forms, tables, checklists, and guidance documents are available from the Texas Commission on Environmental Quality (TCEQ) Air Permits Division website at, www.tceq.texas.gov/permitting/air/air_permits.html

For additional assistance with your application, including resources to help calculate your emissions, please visit the Small Business and Local Government Assistance (SBLGA) webpage at the following link: www.TexasEnviroHelp.org

Che	ck The Most Appropriate Answer	
	Is a description or checklist of how this claim meets the general requirements for the use of PBRs in 30 TAC § 106.4 attached?	🗙 YES 🗌 NO 🗌 NA
b1	Is this claim for construction of a facility authorized in another section of this chapter or for which a standard permit is in effect?	🗌 YES 🕅 NO 🗌 NA
	If "YES," this PBR cannot be used to authorize emissions from the project.	
b2	Is this claim for any change to any facility authorized under another section of this chapter or authorized under a standard permit?	🗌 YES 🕅 NO 🗌 NA
	If "YES," this PBR cannot be used to authorize emissions from the project.	
al	Are facilities or changes located at least 100 feet from any recreational area or residence or other structure not occupied or used solely by the owner or operator of the facilities or the owner of the property upon which the facilities are located?	🗵 YES 🗌 NO 🗌 NA

Save Form

Reset Form

Texas Commission on Enviromental Quality Title 30 Texas Administrative Code § 106.261 Permit By Rule (PBR) Checklist Facilities (Emission Limitations)

Check The Most Appropriate Answer <i>(continued)</i>											
Are total new or increased emissions, including fugitives, less than or equal to \times YES \square NO \square NA 6.0 pounds per hour (lb/hr) and ten tons per year of the following materials ¹											
Check All That Apply											
acetylene	Cyclopentane	🗌 kaolin	🗌 propane								
🗌 alumina	emery dust	□ limestone	propyl alcohol								
🗌 argon	🗌 ethanol	magnesite	propyl ether								
🗌 butane	ethyl acetate	marble	propylene								
🗌 calcium carbonate	ethyl ether	methyl acetylene	□ silicon								
🗌 calcium silicate	ethylene	methyl chloroform	silicon carbide								
🗌 carbon monoxide	🗌 glycerin mist	🗌 methyl cyclohexane	starch								
🗌 cellulose fiber	☐ gypsum	neon neon	sucrose								
🗌 cement dust	🗌 helium	nonan	sulfur dioxide								
🗵 crude oil	🗌 iron oxide dust	oxides of nitrogen	☐ zinc oxide								
Cyclohexane	🗌 isohexane	pentaerythritol	□ zinc stearate								
Cyclohexene	isopropyl alcohol	D plaster of paris									
☑ refinery petroleum fract ten volume percent ben	tions (except for pyrolysis na zene	aphthas and pyrolysis gasol	ine) containing less than								
luorocarbons Numbers	11, 12, 13, 14, 21, 22, 23, 1	13, 114, 115, and 116									

¹Any upstream and/or downstream actual emission increases that result from a project for which this PBR is claimed need to be authorized appropriately. Any associated upstream and/or downstream emissions authorized as part of the PBR claim will need to be included as part of the total new or increased emissions, unless: 1) these emissions stay below current authorized emission limits; 2) there is not a change to any underlying air authorizations for the applicable units associated with BACT, health and environmental impacts, or other representations (i.e. construction plans, operating procedures, throughputs, maximum emission rates, etc.); and 3) this claim is certified via PI-7 CERT or APD-CERT. Notwithstanding the exclusion of any upstream and/or downstream emissions under this PBR claim, the total of all emission increases, including upstream and/or downstream actual emission increases, are required to be part of the PBR registration to determine major new source review applicability under Title 30 TAC Chapter 116. The emission increases associated with the PBR claim and all upstream and/or downstream actual emission increases may not circumvent major new source review requirements under 30 TAC Chapter 116.

Texas Commission on Enviromental Quality Title 30 Texas Administrative Code § 106.261 Permit By Rule (PBR) Checklist Facilities (Emission Limitations)

Chee	ck The Most Appropriate Answer		
a3	Are total new or increased emissions, including fu 1.0 lb/hr of any chemical having a limit value (L) g cubic meter (mg/m ³) as listed and referenced in T of this title (relating to Facilities (Emission and Di	greater than 200 milligrams per able 262 of 30 TAC § 106.262	🗌 YES 🔀 NO 🗌 NA
List	chemical(s):	L value(s):	
	Are total new or increased emissions, including fu 1.0 lb/hr of any chemical not listed or referenced	igitives, less than or equal to in Table 262? ¹	☐ YES 🗷 NO 🗌 NA
	List chemical(s):		
	Are total new or increased emissions, including fulimit value of less than 200 mg/m ³ ? 1	agitives, of a chemical with a	YES 🗙 NO 🗌 NA
	<i>If "YES" the authorization of the chemical is not al § 106.262 to authorize the emissions, if applicable</i>		gest you use 30 TAC
a4	Are there any changes to or additions of any exist equipment?	ting air pollution abatement	YES X NO NA
a5	Will there be any visible emissions, except uncom atmosphere from any point or fugitive source in a opacity in any six-minute period?		UYES X NO NA
a6	Are emission increases five tons per year or great	er?	🗙 YES 🗌 NO 🗌 NA
	<i>If "YES," this checklist must be attached to a Form modification of the facilities.</i>	PI-7 within ten days following th	e installation or
	[Note: The notification shall include a description chemical names, limit values, and a description of		
a7	Are emission increases less than five tons per yea	r?	🗌 YES 🔀 NO 🗌 NA
	<i>If "YES," this checklist must be attached to a Form calculations, data identifying specific chemical nar equipment, if any. (pick one):</i>		
	Within ten days following the installation or include a description of the project, calculat values, and a description of pollution control	tions, data identifying specific cl	
	By March 31 of the following year summariz calendar year.	zing all uses of this permit by ru	le in the previous

² Any upstream and/or downstream actual emission increases that result from a project for which this PBR is claimed need to be authorized appropriately. Any associated upstream and/or downstream emissions authorized as part of the PBR claim will need to be included as part of the total new or increased emissions, unless: 1) these emissions stay below current authorized emission limits; 2) there is not a change to any underlying air authorizations for the applicable units associated with BACT, health and environmental impacts, or other representations (i.e. construction plans, operating procedures, throughputs, maximum emission rates, etc.); and 3) this claim is certified via PI-7 CERT or APD-CERT. Notwithstanding the exclusion of any upstream and/or downstream emissions under this PBR claim, the total of all emission increases, including upstream and/or downstream actual emission increases, are required to be part of the PBR registration to determine major new source review applicability under Title 30 TAC Chapter 116. The emission increases associated with the PBR claim and all upstream and/or downstream actual emission increases may not circumvent major new source review requirements under 30 TAC Chapter 116.

Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the rule number. The permit by rule (PBR) forms, tables, checklists, and guidance documents are available from the Texas Commission on Environmental Quality (TCEQ), Air Permits Division website at: www.tceq.texas.gov/permitting/air/nav/air_pbr.html.

This PBR (§ 106.478) requires registration for storage tanks with a capacity of 25,000 gallons or greater and located in a designated ozone non-attainment area with the commission's Office of Air in Austin before construction begins. The registration shall include a list of all tanks, calculated emissions for each compound in tons per year for each tank, and a Table 7 for each different tank design. The facility may be registered by completing Form PI-7, "Registration for Permits by Rule," or Form PI-7-CERT, "Registration and Certification for Permits by Rule." This checklist should accompany the registration form.

For additional assistance with your application, including resources to help calculate your emissions, please visit the Small Business and Local Government Assistance (SBLGA) webpage at the following link: www.TexasEnviroHelp.org

Questions/Description and Response										
Rule	Applicability									
(7)	What is the capacity of the tank? Please see the attached sheet for details gallons									
(1)	Is the tank located at least 500 feet from the nearest recreational XES NO area, residence, or other structure not occupied or used solely by the owner of the facility or the owner of the property?									
	location from the nearest recreational area, residence, or other structure not occupied or owner of the facility or the owner of the property: 31,000 feet									
(2)	Is the true vapor pressure of the compound being stored less XES NO than 11.0 psia?									
Indicate the true	vapor pressure: Please see the attached sheet for details psia									
(3)(A)	Will any storage tank with a capacity of 40,000 gallons or more XES NO N/A used to store compounds with a true vapor pressure greater than 0.5 psia and less than 11.0 psia be equipped with an internal floating cover or equivalent control?									
Check the type of	tank and control method used:									
🖂 🛛 Internal floa	nting roof tank.									
External flo	ating roof tank using double seal technology with a primary mechanical shoe seal.									
External flo	ating roof tank using double seal technology with a primary liquid-mounted seal.									
An existing change of se	open top floating roof tank having a vapor-mounted primary seal, which is undergoing a rvice.									

Que	stions/Desc	ription and Response								
Rule	e	Applicability								
(3)(E	3)	Does the floating roof or floating cover design of the tank XES NO incorporate sufficient flotation to conform to the requirements of American Petroleum Institute (API) Code 650, Appendix C or an equivalent degree of flotation?								
	: If using an o Code 650, App	equivalent degree of flotation, please des vendix C.	scribe how the method u	sed is equivalent to						
(4)		If the compounds have a true vapor pressure of 0.5 psia or less \square YES \square NO \square N/A at the maximum storage temperature, will each fixed or cone roof be equipped with a submerged fill pipe or use bottom loading?								
	cate the loadin									
\boxtimes	submerged fi	ll pipe	bottom loading							
(5)		Is each fixed or cone roof tank not equip floating roof painted chalk white, except necessary to help the tank absorb or reta maintain the material in the tank in a lig	where a dark color is ain heat in order to	🖾 YES 🗌 NO						
(6)		Have the tank emissions been calculated specified in Section 4.3 of the United States Protection AP-42	C C	🖾 YES 🗌 NO						
(7)		If the capacity of the tank is 25,000 galle provided Form PI-7 or Form PI-7-CERT registration request?		🖾 YES 🗌 NO						
	Form PI-7	\boxtimes	Form PI-7-CERT							
(8)		Are the chemicals or mixtures of chemic to those shown in Table 478?	cals to be stored limited	🖾 YES 🗌 NO						
If "N	O," answer th	e next question.								
(8)		Do mixtures of chemicals listed in Table a total of 1.0% percent by volume of all o listed in Table 478?		🗌 YES 🗌 NO						
		y does not qualify for this PBR.								
		percentage by volume of all unlisted che								
Chen	nical Name:	Pero	cent Composition (perce	nt):						

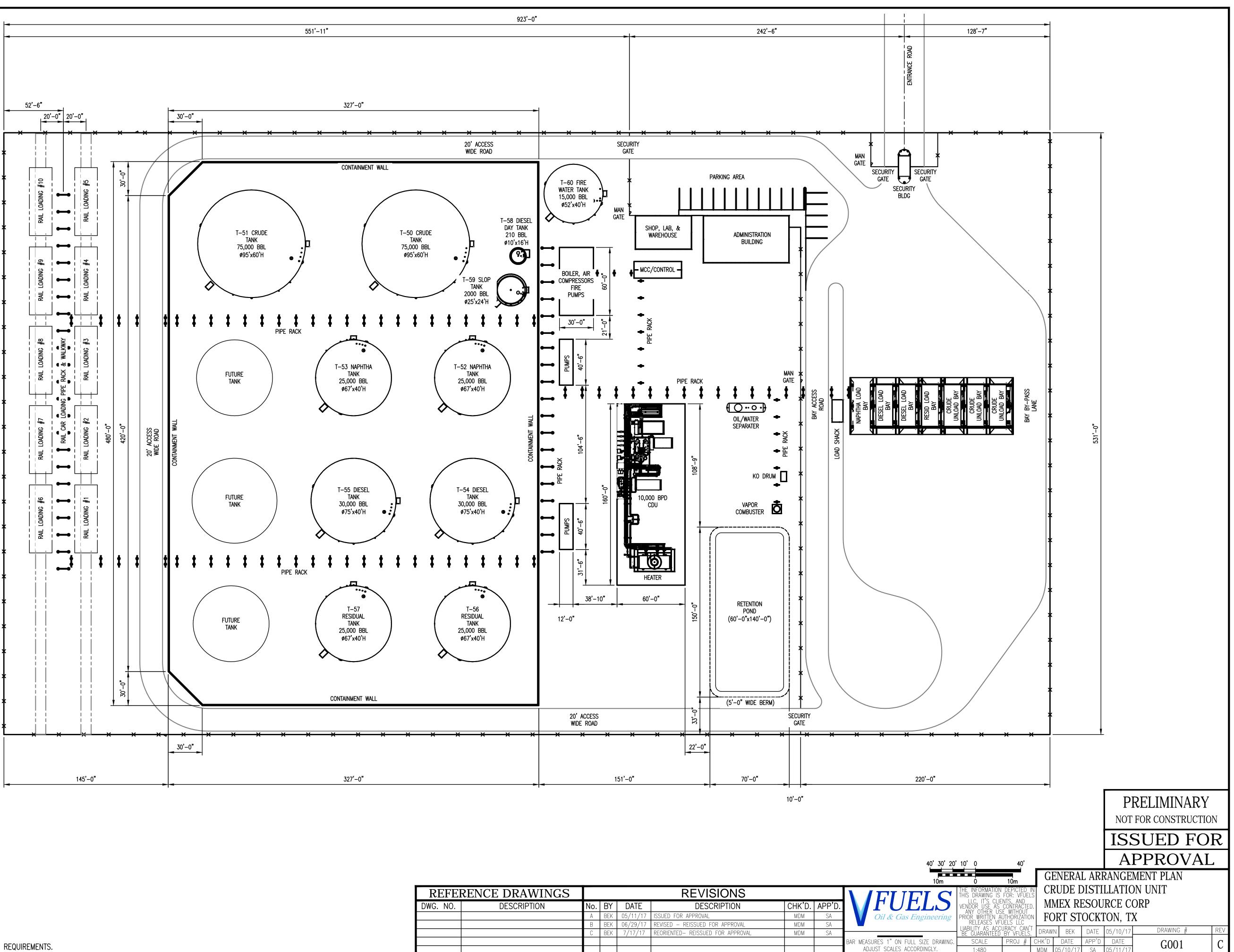
Questions/Description and Response	
Other Applicable Rules and Regulations	
Is this facility subject to 30 TAC §§ 115.112-119?	🗌 YES 🖾 NO
Why or Why Not: The PCR is located in Pecos County which is not a designated nonattainment area for ozone.	
Is this facility subject to 30 TAC §§ 115.120-129?	🗌 YES 🖾 NO
Why or Why Not: The PCR is located in Pecos County which is not a designated nonattainment area for ozone.	
Is this facility subject to 40 CFR Part 60, NSPS Subpart K?	🗌 YES 🖾 NO
Why or Why Not: The storage tanks are constructed after June 11, 1973.	
Is this facility subject to 40 CFR Part 60, NSPS Subpart Kb? Why or Why Not: The storage tanks are constructed after July 23, 1984.	XES 🗌 NO
Is this facility subject to 40 CFR Part 60, NSPS Subpart NNN? Why or Why Not:	☐ YES ⊠ NO
PCR does not any chemcial listed in 40 CFR 60.667.	

Record Keeping: There are no additional record keeping requirements other than the general requirements specified in 30 TAC § 106.8. The records must be made available immediately upon request to the commission or any air pollution control program having jurisdiction. If you have any question about the type of records that should be maintained, contact the Air Program in the TCEQ Regional Office for the region in which the site is located.

Recommended Calculation Methods: In order to demonstrate compliance with this PBR, the registrant may use the emission factors for each air contaminant from the EPA Compilation of Air Pollutant Emission Factors (AP-42), Fifth Edition, Volume I, Chapter 7: "Liquid Storage Tanks" at: www.epa.gov/ttn/chief/ap42/index.html. The registrant may also use the calculation method for storage tanks that store chemical compounds as described in the TCEQ guidance for "Storage Tanks" at: www.tceq.texas.gov/permitting/air/guidance/newsourcereview/tanks/nsr_fac_tanks.html.

		Tank	Tank Size,	True Vapor Pressure,	
EPN	FIN	Description	gal	pressure, psia	Tank Type
TK50	TK50	Crude Oil Tank	3,150,000	9	Internal Floating Roof
TK51	TK51	Crude Oil Tank	3,150,000	9	Internal Floating Roof
TK52	TK52	Naphtha Tank	1,050,000	10	Internal Floating Roof
TK53	TK53	Naphtha Tank	1,050,000	10	Internal Floating Roof
TK54	TK54	Diesel Tank	1,260,000	0.02	Vertical Fixed Cone Roof
TK55	TK55	Diesel Tank	1,260,000	0.02	Vertical Fixed Cone Roof
		Residual/ATB	1,050,000	0.0015	
TK56	TK56	Tank			Vertical Fixed Cone Roof
		Residual/ATB	1,050,000	0.0015	
TK57	TK57	Tank			Vertical Fixed Cone Roof
TK59	TK59	Slop Tank	84,000	4.76	Internal Floating Roof

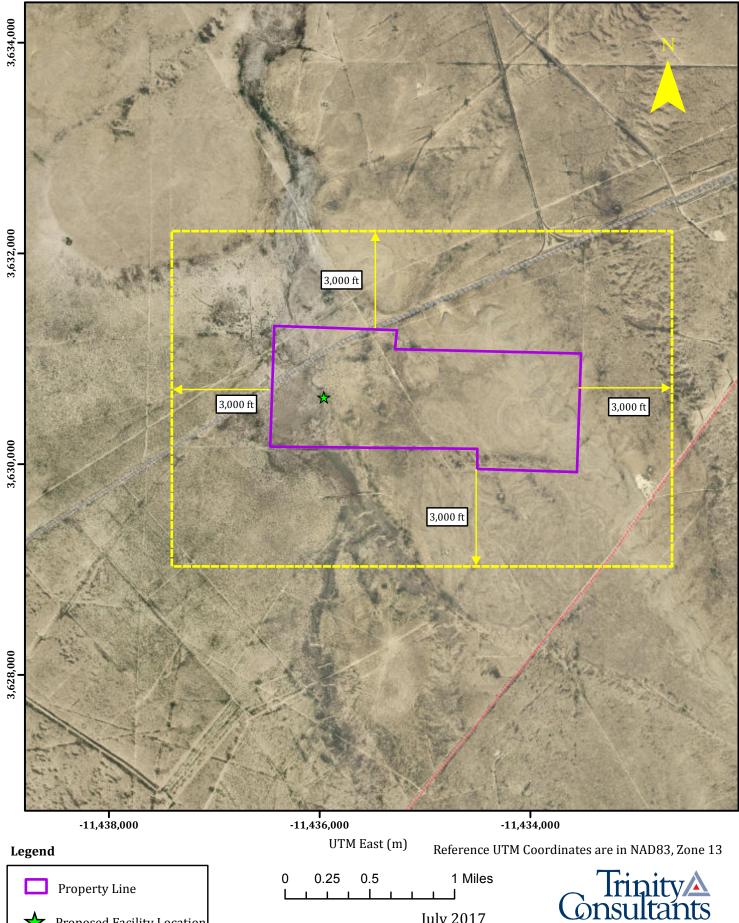
Tank Capacity and Vapor Pressure


Exemption § 106.532 Checklist (Previously Standard Exemption 61) Water and Waste Water Treatment Units

The following checklist has been designed to help you confirm that you meet Exemption § 106.532, previously standard exemption 61 (STDX 61), requirements. <u>Any "No" answers indicate that the claim of exemption</u> <u>may not meet all requirements for the use of Exemption § 106.532, previously standard exemption 61.</u> If you do not meet all the requirements, you may alter the project design/operation in such a way that all the requirements of the exemption are met or obtain a construction permit.

For additional assistance with your application, including resources to help calculate your emissions, please visit the Small Business and Local Government Assistance (SBLGA) webpage at the following link: www.TexasEnviroHelp.org

Please Complete The Following:			
Have you included a description of how this exemption claim meets the general rule for the use of exemptions (§ 106.4, previously § 116.211 checklist is available)?	YES	NO	N/A
Are all the facilities claimed for exemption specifically named or described in § 106.532, previously STDX 61's subparagraphs (a)(1)-(15)?	YES	□ NO	N/A
Attach a list or detailed description of equipment to be constructed or modifie	ed.		
Are all stripping and/or aeration units designed and operated to collect stripped gases and send them to a control device that meets the requirements of § 106.533, previously STDX 68(e)?	YES	□ NO	N/A
Attach a list or description of the strippers and/or aerators identifying the comone.	trol device t	to be used	for each
If combustion is used for control of stripped gases, are all final emissions of HCL resulting from combustion of chlorine or chlorine-containing compounds less than or equal to 0.1 lb/hr?	YES	NO	N/A
If the sum of the partial pressures of all species of VOC in any sample are greater than 1.5 psia, are all liquid phase separators enclosed and vented to a control device meeting the requirements of § 106.533, previously STDX 68(e)?	YES	NO	N/A
Attach a list or description for each one of the separators identifying the sum the control device to be used.	of VOC par	tial pressu	ares or
Have you checked to ensure that none of the facilities claimed for exemption fall in any of the categories of prohibited units listed in STDX § 106.532, previously 61(b)?	YES	□ NO	N/A


12. PLOT PLAN

REFE	RENCE DRAWINGS				REVISIONS			
DWG. NO.	DESCRIPTION	No.	BY	DATE	DESCRIPTION	CHK'D.	APP'D.	
		А	BEK	05/11/17	ISSUED FOR APPROVAL	MDM	SA	
		В	BEK	06/29/17	REVISED – REISSUED FOR APPROVAL	MDM	SA	
		С	BEK	7/17/17	REORIENTED- REISSUED FOR APPROVAL	MDM	SA	
								E

13. AREA MAP

Area Map **Pecos County Refinery MMEX Resources Corporation**

July 2017

UTM North (m)

স্ম

Proposed Facility Location

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T-50/51 Annual Crude MMEX Midland-Odessa Texas MMEX Resource Corp Internal Floating Roof Tank Crude Oil Tanks - Annual Emissions	
Tank Dimensions		
Diameter (ft): Volume (gallons):	95.00 3,150,000.00	
Turnovers:	29.20	
Self Supp. Roof? (y/n):	N 23.20	
No. of Columns:	6.00	
Eff. Col. Diam. (ft):	0.70	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Liquid-mounted	
Secondary Seal	Rim-mounted	
Deck Characteristics		
Deck Fitting Category:	Detail	
Deck Type:	Welded	
Deck Fitting/Status		
Access Hatch (24-in. Diam.)/Bolted	Cover, Gasketed	
Automatic Gauge Float Well/Boltec		
Column Well (24-in. Diam.)/Built-U		
Ladder Well (36-in. Diam.)/Sliding		
Roof Leg or Hanger Well/Adjustabl		
Sample Pipe or Well (24-in Diam)	/Slit Fabric Seal 10% Open	

Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-50/51 Annual Crude MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

			ily Liquid Su perature (de		Liquid Bulk Temp	Bulk		(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations	
Crude Oil (RVP 10)	Jan	55.54	49.26	61.82	63.30	6.9189	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Feb	57.96	51.15	64.77	63.30	7.2050	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Mar	62.28	54.64	69.93	63.30	7.7375	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Apr	66.63	58.71	74.55	63.30	8.3035	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	May	70.44	62.52	78.35	63.30	8.8247	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Jun	73.56	65.82	81.30	63.30	9.2705	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Jul	74.50	67.00	82.00	63.30	9.4081	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Aug	73.75	66.52	80.98	63.30	9.2982	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Sep	69.97	63.56	76.38	63.30	8.7599	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Oct	65.56	59.00	72.12	63.30	8.1613	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Nov	60.09	53.83	66.36	63.30	7.4640	N/A	N/A	50.0000			207.00	Option 4: RVP=10	
Crude Oil (RVP 10)	Dec	56.37	50.25	62.49	63.30	7.0155	N/A	N/A	50.0000			207.00	Option 4: RVP=10	

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-50/51 Annual Crude MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

Month:	Januarv	Februarv	March	April	Mav	June	July	August	September	October	November	December
Rim Seal Losses (lb):	8.6414	9,1686	10.2122	11.4244	12.6533	13.8075	14.1859	13.8827	12,4939			8.8169
Seal Factor A (lb-mole/ft-vr):	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000			0.3000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000			0.6000
Value of Vapor Pressure Function:	0.1819	0.1930	0.2150	0.2405	0.2664	0.2907	0.2987	0.2923	0.2630			0.1856
Value of Vapor Pressure Punction. Vapor Pressure at Daily Average Liquid	0.1019	0.1930	0.2150	0.2403	0.2004	0.2907	0.2507	0.2923	0.2030	0.2339	0.2033	0.1000
Surface Temperature (psia):	6.9189	7,2050	7.7375	8.3035	8.8247	9.2705	9.4081	9.2982	8,7599	8,1613	7,4640	7.0155
Tank Diameter (ft):	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000			95.0000
Vapor Molecular Weight (lb/lb-mole):	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000			50.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000			0.4000
Product Factor.	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Withdrawal Losses (Ib):	80.5840	80.5840	80.5840	80.5840	80.5840	80.5840	80.5840	80.5840	80.5840			80.5840
Number of Columns:	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Effective Column Diameter (ft):	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0,7000	0,7000	0.7000	0.7000
Net Throughput (gal/mo.):	7,665,000.0000 7	7,665,000.0000	7,665,000.0000	7,665,000.0000	7,665,000.0000	7,665,000.0000	7,665,000.0000	7,665,000.0000	7,665,000.0000	7,665,000.0000	7,665,000.0000	7,665,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060
Average Organic Liquid Density (lb/gal):	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000			7,1000
Tank Diameter (ft):	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000			95.0000
Deck Fitting Losses (Ib):	155.7268	165.2278	184.0344	205.8801	228.0252	248.8258	255.6450	250,1806	225.1527	200.1942	174.1805	158.8903
Value of Vapor Pressure Function:	0.1819	0.1930	0.2150	0.2405	0.2664	0.2907	0.2987	0.2923	0.2630			0.1856
Value of Vapor Pressure Function: Vapor Molecular Weight (Ib/lb-mole):	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000			50.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000			0.4000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000
Deck Seam Losses (Ib):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
Deck Seam Length (ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Loss per Unit Length												
Factor (lb-mole/ft-vr);	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tank Diameter (ft):	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000
Vapor Molecular Weight (lb/lb-mole):	50.0000	50.0000	50.0000	50.0000	50.0000	50,0000	50.0000	50,0000	50.0000	50.0000	50.0000	50.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000			0.4000
Total Losses (lb):	244.9522	254.9803	274.8306	297.8885	321.2624	343.2172	350.4149	344.6473	318.2305	291.8871	264.4298	248.2912
							Roof Fitting Loss					
Roof Fitting/Status				Quan	tity K	Fa(lb-mole/yr)	KFb(lb-mole/(yr			m	Losses(lb)	
Access Hatch (24-in. Diam.)/Bolted Cover, Gasket					1	1.60		0.00		0.00	7.6468	
Automatic Gauge Float Well/Bolted Cover, Gasket					1	2.80		0.00		0.00	13.3818	
Column Well (24-in. Diam.)/Built-Up ColSliding C					6	33.00		0.00		0.00	946.2877	
Ladder Well (36-in. Diam.)/Sliding Cover, Gasketer	d				1	56.00		0.00		0.00	267.6369	
Roof Leg or Hanger Well/Adjustable					30	7.90		0.00		0.00	1,132.6777	
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Sea					1	12.00		0.00		0.00	57.3508	
Vacuum Breaker (10-in. Diam.)/Weighted Mech. A					1	6.20		1.20		0.94	29.6312	
, . 5												

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

T-50/51 Annual Crude MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

	Losses(lbs)										
Components	Rim Seal Loss Withdrawl Loss Deck Fitting Loss Deck Seam Loss										
Crude Oil (RVP 10)	136.06	967.01	2,451.96	0.00	3,555.03						

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T-50/51 Hourly Crude MMEX Midland-Odessa Texas MMEX Resource Corp Internal Floating Roof Tank Crude Oil Tanks - Short Term Emissions	
Tank Dimensions		
Diameter (ft):	95.00	
Volume (gallons):	3,150,000.00	
Turnovers:	50.06	
Self Supp. Roof? (y/n):	Ν	
No. of Columns:	6.00	
Eff. Col. Diam. (ft):	0.70	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Liquid-mounted	
Secondary Seal	Rim-mounted	
Deck Characteristics		
Deck Fitting Category:	Detail	
Deck Type:	Welded	
Deck Fitting/Status		
Access Hatch (24-in. Diam.)/Bolted	Cover, Gasketed	
Automatic Gauge Float Well/Bolted		
Column Well (24-in. Diam.)/Built-Up		
Ladder Well (36-in. Diam.)/Sliding (
Roof Leg or Hanger Well/Adjustable		
Sample Pipe or Well (24-in. Diam.)/	Slit Fabric Seal 10% Open	

Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-50/51 Hourly Crude MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapor	Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude RVP 11	Jan	55.54	49.26	61.82	63.30	7.9012	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Feb	57.96	51.15	64.77	63.30	8.2194	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Mar	62.28	54.64	69.93	63.30	8.8105	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Apr	66.63	58.71	74.55	63.30	9.4376	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	May	70.44	62.52	78.35	63.30	10.0142	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Jun	73.56	65.82	81.30	63.30	10.5066	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Jul	74.50	67.00	82.00	63.30	10.6585	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Aug	73.75	66.52	80.98	63.30	10.5372	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Sep	69.97	63.56	76.38	63.30	9.9426	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Oct	65.56	59.00	72.12	63.30	9.2802	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Nov	60.09	53.83	66.36	63.30	8.5070	N/A	N/A	50.0000			207.00	Option 4: RVP=11
Crude RVP 11	Dec	56.37	50.25	62.49	63.30	8.0087	N/A	N/A	50.0000			207.00	Option 4: RVP=11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-50/51 Hourly Crude MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Rim Seal Losses (Ib):	10.5511	11.2367	12.6180	14.2686	16.0020	17.6972	18.2695	17.8102	15.7733	13.8337	11.8901	10.7785
Seal Factor A (lb-mole/ft-yr):	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000
Value of Vapor Pressure Function:	0.2221	0.2366	0.2656	0.3004	0.3369	0.3726	0.3846	0.3750	0.3321	0.2912	0.2503	0.2269
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	7.9012	8.2194	8.8105	9.4376	10.0142	10.5066	10.6585	10.5372	9.9426	9.2802	8.5070	8.0087
Tank Diameter (ft):	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000
Vapor Molecular Weight (lb/lb-mole):	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Withdrawal Losses (lb):	138.1439	138.1439	138.1439	138,1439	138.1439	138,1439	138.1439	138,1439	138.1439	138,1439	138.1439	138,1439
Number of Columns:	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Effective Column Diameter (ft):	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000
Net Throughput (gal/mo.):	13.140.000.000013			3.140.000.00001								
Shell Clingage Factor (bbl/1000 soft):	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060
Average Organic Liquid Density (lb/gal):	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000
Tank Diameter (ft):	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000
Deck Fitting Losses (Ib):	190.1420	202.4978	227.3900	257.1343	288.3720	318.9219	329.2357	320,9584	284.2507	249.2983	214.2719	194.2407
Value of Vapor Pressure Function:	0.2221	0.2366	0.2656	0.3004	0.3369	0.3726	0.3846	0.3750	0.3321	0.2912	0.2503	0.2269
Vapor Molecular Weight (lb/lb-mole):	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000	513.6000
Deck Seam Losses (Ib):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length (ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Loss per Unit Length	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Factor (lb-mole/ft-vr):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tank Diameter (ft):	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000	95.0000
Vapor Molecular Weight (lb/lb-mole):	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
FIGUEL FACIOL	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Total Losses (lb):	338.8370	351.8785	378,1520	409.5468	442.5179	474.7630	485.6491	476.9126	438.1679	401.2760	364.3059	343.1632
							Roof Fitting Lo	ee Eactore				
Roof Fitting/Status				Q	uantity	KFa(lb-mole/yr				m	Losses(lb)	
Access Hatch (24-in. Diam.)/Bolted Cover, Ga	sketed				1	1.6)	0.00		0.00	9.5963	
Automatic Gauge Float Well/Bolted Cover, Ga	sketed				1	2.8)	0.00		0.00	16.7936	
Column Well (24-in. Diam.)/Built-Up ColSlidir	ng Cover, Gask.				6	33.0)	0.00		0.00	1,187.5444	
Ladder Well (36-in, Diam,)/Sliding Cover, Gasl					1	56.0)	0.00		0.00	335.8712	
Roof Leg or Hanger Well/Adjustable					30	7.9		0.00		0.00	1,421.4547	
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open				1	12.0)	0.00		0.00	71.9724		
Vacuum Breaker (10-in. Diam.)/Weighted Mec					1	6.2		1.20		0.94	37.1857	
·····												

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

T-50/51 Hourly Crude MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

	Losses(lbs)										
Components	Rim Seal Loss Withdrawl Loss Deck Fitting Loss Deck Seam Loss										
Crude RVP 11	170.73	1,657.73	3,076.71	0.00	4,905.17						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T-58 Fuel MMEX Midland-Odessa Texas MMEX Resource Corp Vertical Fixed Roof Tank Diesel Fuel Storage
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	15.00 10.00 14.00 8.00 8.225.29 2.24 18,396.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.50 0.10
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-58 Fuel MMEX - Vertical Fixed Roof Tank Midland-Odessa, Texas

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	Jan	55.54	49.26	61.82	63.30	0.0061	0.0044	0.0077	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074
Distillate fuel oil no. 2	Feb	57.96	51.15	64.77	63.30	0.0068	0.0048	0.0082	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074
Distillate fuel oil no. 2	Mar	62.28	54.64	69.93	63.30	0.0078	0.0058	0.0090	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	Apr	66.63	58.71	74.55	63.30	0.0085	0.0070	0.0104	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	May	70.44	62.52	78.35	63.30	0.0091	0.0078	0.0115	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Jun	73.56	65.82	81.30	63.30	0.0101	0.0083	0.0125	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Jul	74.50	67.00	82.00	63.30	0.0104	0.0085	0.0128	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Aug	73.75	66.52	80.98	63.30	0.0101	0.0084	0.0124	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Sep	69.97	63.56	76.38	63.30	0.0090	0.0080	0.0109	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	Oct	65.56	59.00	72.12	63.30	0.0083	0.0071	0.0096	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	Nov	60.09	53.83	66.36	63.30	0.0074	0.0056	0.0084	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	Dec	56.37	50.25	62.49	63.30	0.0063	0.0046	0.0078	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-58 Fuel MMEX - Vertical Fixed Roof Tank Midland-Odessa, Texas

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Standing Losses (Ib):	0.1112	0.1212	0.1703	0.1833	0.2014	0.2074	0.2119	0.1997	0.1528	0.1517	0.1278	0.1119
Vapor Space Volume (cu ft): Vapor Density (lb/cu ft):	562.8687 0.0001	562.8687 0.0002	562.8687 0.0002	562.8687 0.0002	562.8687 0.0002	562.8687 0.0002	562.8687 0.0002	562.8687 0.0002	562.8687 0.0002	562.8687 0.0002	562.8687 0.0002	562.8687 0.0001
Vapor Space Expansion Factor:	0.0445	0.0484	0.0543	0.0559	0.0555	0.0539	0.0519	0.0500	0.0002	0.0456	0.0439	0.0432
Vented Vapor Saturation Factor:	0.9977	0.9974	0.9971	0.9968	0.9965	0.9962	0.9961	0.9962	0.9966	0.9969	0.9972	0.9976
Tank Vapor Space Volume:												
Vapor Space Volume (cu ft):	562.8687	562.8687	562.8687	562.8687	562.8687	562.8687	562.8687	562.8687	562.8687	562.8687	562.8687	562.8687
Tank Diameter (ft):	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000
Vapor Space Outage (ft): Tank Shell Height (ft):	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000	7.1667 15.0000
Average Liquid Height (ft):	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
Roof Outage (ft):	0.1667	0.1667	0.1667	0.1667	0.1667	0.1667	0.1667	0.1667	0.1667	0.1667	0.1667	0.1667
Roof Outage (Cone Roof)	0.4007	0.4007	0.4007	0 4007	0.4007	0 4007	0 4007	0 4007	0 4007	0 4007	0.4007	0 4007
Roof Outage (ft): Roof Height (ft):	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000	0.1667 0.5000
Roof Slope (ft/ft):	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
Shell Radius (ft):	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
Vapor Density												
Vapor Density (lb/cu ft):	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001
Vapor Molecular Weight (Ib/Ib-mole):	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.0061	0.0068	0.0078	0.0085	0.0091	0.0101	0.0104	0.0101	0.0090	0.0083	0.0074	0.0063
Daily Avg. Liquid Surface Temp. (deg. R):	515.2115	517.6343	521.9527	526.2999	530.1074	533.2302	534.1708	533.4202	529.6435	525.2298	519.7639	516.0379
Daily Average Ambient Temp. (deg. F):	42.5000	47.1000	55.7000	64.6000	72.7500	79.5500	81.9500	80.8000	73.2500	63.9500	52.5500	44.6000
Ideal Gas Constant R												
(psia cuft / (lb-mol-deg R)):	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731
Liquid Bulk Temperature (deg. R):	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700
Daily Total Solar Insulation	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700
Factor (Btu/sqft day):	1.039.6938	1.336.6585	1,734.5151	2.055.5923	2.220.5727	2,317.9746	2.231.9945	2.049.8815	1.711.3544	1.471.8155	1.136.7784	967.0390
(
Vapor Space Expansion Factor												
Vapor Space Expansion Factor:	0.0445	0.0484	0.0543	0.0559	0.0555	0.0539	0.0519	0.0500	0.0441	0.0456	0.0439	0.0432
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R):	25.1089	27.2425	30.5763	31.6726	31.6659	30.9776	29.9923	28.9094	25.6420	26.2298	25.0671	24.4751
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia):	25.1089 0.0033	27.2425 0.0033	30.5763 0.0031	31.6726 0.0033	31.6659 0.0037	30.9776 0.0042	29.9923 0.0043	28.9094 0.0039	25.6420 0.0029	26.2298 0.0025	25.0671 0.0028	24.4751 0.0032
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Settling Range(psia):	25.1089	27.2425	30.5763	31.6726	31.6659	30.9776	29.9923	28.9094	25.6420	26.2298	25.0671	24.4751
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia):	25.1089 0.0033	27.2425 0.0033	30.5763 0.0031	31.6726 0.0033	31.6659 0.0037	30.9776 0.0042	29.9923 0.0043	28.9094 0.0039	25.6420 0.0029	26.2298 0.0025	25.0671 0.0028	24.4751 0.0032
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R); Daily Vapor Pressure Range (psia); Breather Vent Press, Setting Range(psia); Vapor Pressure at Daily Average Liquid Surface Temperature (psia); Vapor Pressure at Daily Minimum Liquid	25.1089 0.0033 0.0600 0.0061	27.2425 0.0033 0.0600 0.0068	30.5763 0.0031 0.0600 0.0078	31.6726 0.0033 0.0600 0.0085	31.6659 0.0037 0.0600 0.0091	30.9776 0.0042 0.0600 0.0101	29.9923 0.0043 0.0600 0.0104	28.9094 0.0039 0.0600 0.0101	25.6420 0.0029 0.0600 0.0090	26.2298 0.0025 0.0600 0.0083	25.0671 0.0028 0.0600 0.0074	24.4751 0.0032 0.0600 0.0063
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather' vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (psia):	25.1089 0.0033 0.0600	27.2425 0.0033 0.0600	30.5763 0.0031 0.0600	31.6726 0.0033 0.0600	31.6659 0.0037 0.0600	30.9776 0.0042 0.0600	29.9923 0.0043 0.0600	28.9094 0.0039 0.0600	25.6420 0.0029 0.0600	26.2298 0.0025 0.0600	25.0671 0.0028 0.0600	24.4751 0.0032 0.0600
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	25.1089 0.0033 0.0600 0.0061 0.0044	27.2425 0.0033 0.0600 0.0068 0.0048	30.5763 0.0031 0.0600 0.0078 0.0058	31.6726 0.0033 0.0600 0.0085 0.0070	31.6659 0.0037 0.0600 0.0091 0.0078	30.9776 0.0042 0.0600 0.0101 0.0083	29.9923 0.0043 0.0600 0.0104 0.0085	28.9094 0.0039 0.0600 0.0101 0.0084	25.6420 0.0029 0.0600 0.0090 0.0080	26.2298 0.0025 0.0600 0.0083 0.0071	25.0671 0.0028 0.0600 0.0074 0.0056	24.4751 0.0032 0.0600 0.0063 0.0046
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather' vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Lquid Surface Temperature (psia):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077	27.2425 0.0033 0.0600 0.0068 0.0048 0.0048	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109	26.2298 0.0025 0.0600 0.0083 0.0071 0.0096	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Ven Press. Stetting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115	27.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435	26.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Lquid Surface Temperature (psia): Daily Aug. Liquid Surface Temp. (deg R):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077	27.2425 0.0033 0.0600 0.0068 0.0048 0.0048	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109	26.2298 0.0025 0.0600 0.0083 0.0071 0.0096	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Ven Press. Stetting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R):	25.1089 0.0033 0.0660 0.0061 0.0044 0.0077 515.2115 508.9343	27.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343 510.8237	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 523.2330	26.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bsia): Breather Ven Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Manimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Aya, Liquid Surface Temp, (deg R): Daily Aya, Liquid Surface Temp, (deg R): Daily Min. Liquid Surface Temp, (deg R): Daily Maya, Liquid Surface Temp, (deg R): Daily Maya, Liquid Surface Temp, (deg R): Daily Maya, Liquid Surface Temp, (deg R):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887	27.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343 510.8237 524.4450	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 538.0239	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859 540.9746	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 523.2330 536.0541	26.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather' Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Lquid Surface Temperature (psia): Daily Ang. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Daily Matter Temp. Range (deg. R): Vented Vapor Saturation Factor	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.3943 521.4887 28.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343 510.8237 524.4450 29.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 532.1909 538.0239 29.3000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859 540.9746 27.7000	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 554.6727 541.6688 26.9000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 523.2330 536.0541 24.3000	26.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000	24.4751 0.0032 0.0660 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567 27.6000
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bais): Breather Ven Press, Setting Range(psia); Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R): Vented Vapor Saturation Factor Vented Vapor Saturation Factor	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887	27.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343 510.8237 524.4450	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 538.0239	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859 540.9746	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 523.2330 536.0541	26.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Ang. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max Equif Surface Temp. (deg R): Daily Max Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.3943 521.4887 28.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343 510.8237 524.4450 29.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 532.1909 538.0239 29.3000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859 540.9746 27.7000	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 554.6727 541.6688 26.9000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 523.2330 536.0541 24.3000	26.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000	24.4751 0.0032 0.0660 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567 27.6000
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bais): Breather Ven Press, Setting Range(psia); Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R): Vented Vapor Saturation Factor Vented Vapor Saturation Factor	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.3933 521.4887 28.0000 0.9977	27.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343 510.8237 524.4450 29.0000 0.9974	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000	31,6659 0.0037 0.0600 0.0091 0.0078 0.0115 530,1074 522,1909 538,0239 29,3000 0.9965	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859 540.9746 27.7000 0.9962	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6668 26.9000 0.9961	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000 0.9962	25.6420 0.0029 0.0600 0.0080 0.0080 0.0109 529.6435 523.2330 536.0541 24.3000 0.9966	26.2288 0.0025 0.0600 0.0083 0.0071 0.0096 525.2288 518.6724 531.7873 26.7000 0.9969	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567 27.6000 0.9976
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bais): Breather Ven Press, Setting Range(psia); Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R): Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667	27,2425 0.0033 0.0600 0.0068 0.0048 0.0082 517,6343 510,8237 524,4450 29.0000 0.9974 0.0968 7.1667	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.0978 7.1667	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 0.9968 0.0968 0.0085 7.1667	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 538.0239 29.3000 0.9965 0.0991 7.1667	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 553.2302 525.4859 540.9746 27.7000 0.9962 0.0101 7.1667	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.0104 7.1667	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000 0.9962 0.0101 7.1667	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 523.2330 536.0541 24.3000 0.9966 0.0996 0.0090 7.1667	26.2288 0.0025 0.0025 0.0000 0.0083 0.0071 0.0096 525.2288 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0074 7.1667	24.4751 0.0032 0.0660 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567 27.6000 0.9976 0.0963 7.1667
Vapor Špace Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather' Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Lquid Surface Temperature (psia): Daily Ang. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Daily Mather Temp. Range (deg. R): Daily Maxes Temperature (psia): Vapor Sapore Outage (f): Vapor Space Outage (f): Vapor Space Outage (f):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667	27.2425 0.0033 0.0660 0.0068 0.0048 0.0048 0.0082 517.6343 510.8237 524.4450 29.0000 0.9974 0.0068 7.1667 0.0323	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.0078 7.1667 0.0368	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 0.9968 0.0085 7.1667 0.00401	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 538.0239 29.3000 0.9965 0.0991 7.1667 0.0433	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859 540.9746 27.7000 0.9962 0.0101 7.1667 0.0478	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.9961 0.0104 7.1667 0.0491	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480	25.6420 0.0029 0.0000 0.0080 0.0080 0.0080 529.6435 523.230 536.0541 24.3000 0.9966 0.0090 7.1667 0.0427	26.2288 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667 0.0393	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0074 7.1667 0.0352	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567 27.6000 0.9976 0.0963 7.1667 0.0063
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bais): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily May. Liquid Surface Temp. (deg R): Daily May. Liquid Surface Temp. (deg R): Daily Manbient Temp. Range (deg. R): Daily Ambient Temp. Range (deg. R): Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft): Working Losse (b): Vapor Molecular Weight (b/bt-mole):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667	27,2425 0.0033 0.0600 0.0068 0.0048 0.0082 517,6343 510,8237 524,4450 29.0000 0.9974 0.0968 7.1667	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.0978 7.1667	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 0.9968 0.0968 0.0085 7.1667	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 538.0239 29.3000 0.9965 0.0991 7.1667	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 553.2302 525.4859 540.9746 27.7000 0.9962 0.0101 7.1667	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.0104 7.1667	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000 0.9962 0.0101 7.1667	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 523.2330 536.0541 24.3000 0.9966 0.0996 0.0090 7.1667	26.2298 0.0025 0.0025 0.0000 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0074 7.1667	24.4751 0.0032 0.0660 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567 27.6000 0.9976 0.0963 7.1667
Vapor Špace Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather' Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Lquid Surface Temperature (psia): Daily Ang. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Daily Mather Temp. Range (deg. R): Daily Max Liquid Surface Temp. (deg R): Vapor Sasure at Daily Average Liquid: Surface Temperature (psia): Vapor Sasure at Daily Average Liquid: Surface Surface (h): Vapor Molecular Weight (Ib/Ib-mole): Vapor Molecular Weight (Ib/Ib-mole):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343 510.8237 524.4450 29.0000 29.0007 0.9974 0.0068 7.1667 0.0323 130.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0058 0.0090 521.9527 514.3086 529.5967 31.0007 0.9971 0.0078 7.1667 0.0368 130.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 30.9968 0.0085 7.1667 0.0401 130.0000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 538.0239 29.3000 0.9965 0.0091 7.1667 0.0433 130.0000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859 540.9746 27.7000 0.9962 0.0101 7.1667 0.0478 130.0000	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 130.0000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480 130.0000	25.6420 0.0029 0.0009 0.0080 0.0080 0.0080 0.0080 529.6435 523.2330 536.0541 24.3000 7.1667 0.0996 0.0090 7.1667	266.2288 0.0025 0.0600 0.0083 0.0071 0.0096 525.2288 518.6724 551.7873 26.7000 0.9969 0.0083 7.1667 0.0393 130.0000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0074 7.1667 0.0352 130.0000	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567 27.6000 0.9976 0.0963 7.1667 0.0301 130.0000
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bais): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (psia): Daily Aug. Lquid Surface Temp. (deg R): Daily May. Lquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R): Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vapor Pressure at Daily Average Lquid: Surface Temperature (psia): Vapor Molecular Weight (Ib/Ib-mole): Vapor Molecular Weight (Ib/Ib-mole): Vapor Pressure at Daily Average Lquid Surface Temperature (psia):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0062 517.6343 510.8237 524.4450 524.450 524.450 524.450 524.467 0.0068 7.1667 0.0323 130.0000 0.0068	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 522.5967 31.0000 0.9971 0.0078 7.1667 0.0368 133.0000 0.0078	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 0.9968 0.0085 7.1667 0.0401 133.0000 0.0085	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 538.0239 29.3000 0.9965 0.0991 7.1667 0.0433 133.0000 0.0091	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859 540.9746 27.7000 0.9962 0.0101 7.1667 0.0478 133.0000 0.0101	229.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 133.0000 0.0104	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 5540.6475 540.6475 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480 133.0000 0.0101	255.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 523.2330 536.0541 24.3000 0.9966 0.0090 7.1667 0.0427 133.0000 0.0090	266.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667 0.0393 133.0000 0.0083	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0371 526.0371 7.3000 0.9972 0.0074 7.1667 0.0352 133.0000 0.0074	244751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567 27.6000 0.9976 0.0063 7.1667 0.0301 130.0000 0.0063
Vapor Špace Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather' Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Lquid Surface Temperature (psia): Daily Ang. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Daily Mather Temp. Range (deg. R): Daily Max Liquid Surface Temp. (deg R): Vapor Sasure at Daily Average Liquid: Surface Temperature (psia): Vapor Sasure at Daily Average Liquid: Surface Surface (h): Vapor Molecular Weight (Ib/Ib-mole): Vapor Molecular Weight (Ib/Ib-mole):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343 510.8237 524.4450 29.0000 29.0007 0.9974 0.0068 7.1667 0.0323 130.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.9971 0.0078 7.1667 0.0368 130.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 30.9968 0.0085 7.1667 0.0401 130.0000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 538.0239 29.3000 0.9965 0.0091 7.1667 0.0433 130.0000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4859 540.9746 27.7000 0.9962 0.0101 7.1667 0.0478 130.0000	29.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 130.0000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480 130.0000	25.6420 0.0029 0.0009 0.0080 0.0080 0.0080 0.0080 529.6435 523.2330 536.0541 24.3000 7.1667 0.0996 0.0090 7.1667	266.2288 0.0025 0.0600 0.0083 0.0071 0.0096 525.2288 518.6724 551.7873 26.7000 0.9969 0.0083 7.1667 0.0393 130.0000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0074 7.1667 0.0352 130.0000	24.4751 0.0032 0.0660 0.0063 0.0046 0.0078 516.0379 509.3192 522.1567 27.6000 0.9976 0.0963 7.1667 0.0301 130.0000
Vapor Špace Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bsia): Breather' Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Lquid Surface Temperature (psia): Daily Ang. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Mather Temp. Range (deg. R): Daily Max Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Molecular Weight (Ib/Ib-mole): Vapor Molecular Weight (Ib/Ib-mole): Vapor Molecular Weight (Ib/Ib-mole): Vapor Cemperature (psia): Natrace Temperature (psia): Natrace Temperature (psia): Natrace Temperature (psia): Annual Turnovers:	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4857 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000 0.0061 1.533.0000 2.2365 1.0000	277.2425 0.0033 0.0600 0.0068 0.0048 0.0082 517.6343 510.8237 524.4450 29.0000 0.9974 0.09874 0.0068 7.1667 0.0323 130.0000 0.0068 1.533.0000 1.533.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0098 0.0098 521.9527 514.3086 529.5967 31.0000 0.9971 0.0971 0.0078 7.1667 0.0368 130.0000 0.0078 1.533.0000 2.2365 1.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 528.2999 518.3817 554.2180 0.9968 0.0085 7.1667 0.0401 130.0000 0.0085 1.533.0000 2.2365 1.0000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 538.0239 29.3000 0.9965 0.0091 7.1667 0.0433 130.0000 0.0091 1.533.0000 1.533.0000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 533.2302 534.2459 540.9746 27.7000 0.9962 0.9962 0.9962 0.0101 7.1667 0.0478 130.0000 0.0101 1.533.0000	229.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 130.0000 0.0104 1.533.0000 2.2365 1.0000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 28.6000 0.9962 0.0101 7.1667 0.0480 130.0000 0.0101 1.533.0000 2.2365 1.0000	25.6420 0.0029 0.0029 0.0090 0.0080 0.0080 0.0109 529.6435 523.2330 536.0541 24.3000 0.9966 0.0090 7.1667 0.0427 130.0000 0.0090 1.533.0000 1.533.0000	266.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 551.7873 26.7000 0.9969 0.0083 7.1667 0.0393 130.0000 0.0083 130.0000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0074 7.1667 0.0352 130.0000 0.0074 1.533.0000 2.2365 1.0000	244751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 515.0379 27.5000 0.0976 0.0963 7.1667 0.0931 130.0000 0.0931 130.0000 0.0063 1.533.0000
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bais): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (osia): Vapor Pressure at Daily Minimum Lquid Surface Temperature (osia): Daily Arg. Liquid Surface Temp. (deg R): Daily Arg. Liquid Surface Temp. (deg R): Daily Ambert Temp. Range (deg. R): Daily Ambert Temp. Range (deg. R): Daily Ambert Temp. Range (deg. R): Daily App Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Lquid: Surface Temperature (osia): Vapor Space Outage (ft): Vapor Molecular Weight (Ib/Ib-mole): Vapor Molecular Weight (Ib/Ib-mole): Vapor Pressure at Daily Average Lquid Surface Temperature (osia): Napor Pressure at Daily Average Lquid Surface Temperature (osia): Net Throughput (gal/mo.): Annual Tumovers: Turnover Factor: Maximum Lquid Volume (gal):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000 130.0000 0.0061 1.533.0000 0.0061 1.533.0000 0.2365 1.532.2880	27.2425 0.0033 0.0600 0.0068 0.0048 0.0062 517.6343 510.8237 524.4450 29.0000 0.9974 0.0068 7.1667 0.0323 130.0000 0.0068 1.533.0000 0.0068 1.533.0000 0.22365 1.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.0078 7.1667 0.0368 130.0000 0.0078 1,533.0000 0.0078 1,533.0000 0.22365 1.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 0.9968 0.0085 7.1667 0.0401 133.0000 0.0085 1.533.0000 0.22365 1.0000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 522.1909 29.3000 0.9965 0.0091 7.1667 0.0433 130.0000 0.0091 1,533.0000 0.22365 1.0000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4659 530.2302 0.9962 0.0101 7.1667 0.0478 130.0000 0.0101 1.533.0000 2.2368 1.0000	229.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 133.0000 0.0104 1.533.0000 0.22365 1.0000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 5540.6475 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480 133.0000 0.0101 1,533.0000 0.2.2365 1.0000	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 532.2330 536.0541 24.3000 0.9966 0.0090 7.1667 0.0427 133.0000 0.0090 1.533.0000 0.22365 1.0000	266.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667 0.0393 130.0000 0.0083 1,533.0000 0.0083 1,533.0000 0.22365 1.0000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0377 27.3000 0.9972 0.0074 7.1667 0.0352 130.0000 0.0074 1.533.0000 0.0074 1.533.0000 0.0074	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192 522.1567 27.6000 0.9976 0.0063 7.1667 0.0301 133.0000 0.0063 1.133.0000 2.2365 1.0000
Vapor Špace Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bai): Breather' Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Ang. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft): Vapor Molecular Weight (fb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Turnovers: Turnover Factor: Maximum Liquid Volume (gal): Maximum Liquid Volume (gal):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000 0.0061 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0048 0.0082 517.6343 510.825 29.0000 0.9974 0.0068 7.1667 0.0323 130.0000 0.0068 1.533.0000 2.2365 1.0000 8,225.2880 14.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.9971 0.0078 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 528.2999 518.3817 534.2180 0.9968 0.0085 7.1667 0.0401 130.0000 0.0085 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 552.1909 58.0239 29.3000 0.9965 0.0091 7.1667 0.0433 130.0000 0.0091 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 225.4859 540.9746 0.9962 0.9962 0.0101 7.1667 0.0478 130.0000 0.0101 1.533.0000 0.0101 1.533.0000 0.22865 1.0001 2.2265 1.0001 1.4.000	229.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 133.0000 0.0104 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480 130.0000 0.0101 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	25.6420 0.0029 0.0029 0.0090 0.0080 0.0080 0.0109 529.6435 523.2330 556.0541 24.3000 0.9966 0.0090 7.1667 0.0427 130.0000 1.533.0000 2.2365 1.0000 8,225.2880 14.0000	266.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667 0.0393 130.0000 0.0083 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0972 0.0074 7.1667 0.0352 130.0000 0.0074 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	244751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 559.9192 522.1567 0.09976 0.09976 0.09976 0.0063 7.1667 0.0301 130.0000 0.0063 1.533.0000 2.2365 1.0000 2.2365 1.0001 2.2365 1.0011 2.1531 0.0053 1.533.0000 2.2365 1.0011 2.1531 0.0053 1.533.0000 2.2365 1.0012 1.533.0000 2.2365 1.0012 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 1.533.0000 2.2365 1.0311 2.525.000 2.5355 1.535 1.555 1.5577 1.5577 1.5577 1.5577 1.5577 1.5577 1.5577 1.5577 1.5577 1.55777 1.5577 1.55777 1.55777 1.55777 1.557777 1.5577777 1.557777777777
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (sisi): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (sisi): Vapor Pressure at Daily Minimum Lquid Surface Temperature (sisi): Daily Aug. Liquid Surface Temp. (deg R): Daily Ams. Liquid Surface Temp. (deg R): Daily App. Saturation Factor: Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Molecular Weight (Ib/Ib-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Net Throughput (gal/mo.): Annual Tunovers: Turnover Factor: Maximum Liquid Valume (gal): Maximum Liquid Valume (gal): Maximum Liquid Height (f():	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000 130.0000 0.0061 1.533.0000 2.2365 1.0000 8.222.52880 14.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0062 517.6343 510.8237 524.4450 29.0000 0.9974 0.0068 7.1667 0.0323 130.0000 0.0068 1,533.0000 0.22365 1.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.0078 7.1667 0.0368 130.0000 0.0078 1.533.0000 0.22365 1.0000 8.225.2880 14.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 0.9968 0.0085 7.1667 0.0401 133.0000 0.0085 1.533.0000 0.2.2365 1.0000 8.225.2880 14.0000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 552.1909 29.3000 0.9965 0.0091 7.1667 0.0433 130.0000 0.0091 1,533.0000 0.22365 1.0000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4459 540.9746 27.7000 0.9962 0.0101 7.1667 0.0478 130.0000 0.0101 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	229.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 556.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 133.0000 0.0104 1.533.0000 0.22365 1.0000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 556.1928 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480 133.0000 0.0101 1,533.0000 0.22365 1.0000 8.225.2880 14.0000	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 532.2330 536.0541 24.3000 0.9966 0.0090 7.1667 0.0427 133.0000 0.0090 1.533.0000 0.22365 1.0000	266.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667 0.0393 130.0000 0.0083 1,533.0000 0.2.2365 1.0000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0074 7.1667 0.0352 130.0000 0.0074 1.533.0000 0.0074 1.533.0000 0.0074 1.533.0000 0.0074	24.4751 0.032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192 27.6000 0.9976 0.0063 7.1667 0.0301 133.0000 0.0063 1.153.0000 2.2355 1.0000 8.225.2880 14.0000
Vapor Špace Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (bai): Breather' Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Ang. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Daily Max Liquid Surface Temp. (deg R): Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft): Vapor Molecular Weight (fb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Turnovers: Turnover Factor: Maximum Liquid Volume (gal): Maximum Liquid Volume (gal):	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000 0.0061 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0048 0.0082 517.6343 510.825 29.0000 0.9974 0.0068 7.1667 0.0323 130.0000 0.0068 1.533.0000 2.2365 1.0000 8,225.2880 14.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.9971 0.0078 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 528.2999 518.3817 534.2180 0.9968 0.0085 7.1667 0.0401 130.0000 0.0085 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 552.1909 58.0239 29.3000 0.9965 0.0091 7.1667 0.0433 130.0000 0.0091 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 225.4859 540.9746 0.9962 0.9962 0.0101 7.1667 0.0478 130.0000 0.0101 1.533.0000 0.0101 1.533.0000 0.22865 1.0001 2.2265 1.0001 1.4.000	229.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 526.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 133.0000 0.0104 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 526.1928 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480 130.0000 0.0101 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	25.6420 0.0029 0.0029 0.0090 0.0080 0.0080 0.0109 529.6435 523.2330 556.0541 24.3000 0.9966 0.0090 7.1667 0.0427 130.0000 1.533.0000 2.2365 1.0000 8,225.2880 14.0000	266.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667 0.0393 130.0000 0.0083 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0972 0.0074 7.1667 0.0352 130.0000 0.0074 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	24.4751 0.032 0.0600 0.0063 0.0046 0.0078 516.0379 519.9192 52.1567 0.9976 0.0063 7.1667 0.0063 7.1667 0.0063 1.533.0000 2.2385 1.0301 2.2385 1.031 1.533.0000
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (sisi): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (sisi): Vapor Pressure at Daily Minimum Lquid Surface Temperature (sisi): Daily Aug. Liquid Surface Temp. (deg R): Daily Ams. Liquid Surface Temp. (deg R): Daily App. Saturation Factor: Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Molecular Weight (Ib/Ib-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Net Throughput (gal/mo.): Annual Tunovers: Turnover Factor: Maximum Liquid Valume (gal): Maximum Liquid Valume (gal): Maximum Liquid Height (f():	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000 130.0000 0.0061 1.533.0000 2.2365 1.0000 8.222.52880 14.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0062 517.6343 510.8237 524.4450 29.0000 0.9974 0.0068 7.1667 0.0323 130.0000 0.0068 1,533.0000 0.22365 1.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.0078 7.1667 0.0368 130.0000 0.0078 1.533.0000 0.22365 1.0000 8.225.2880 14.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 0.9968 0.0085 7.1667 0.0401 130.0000 0.0085 1.533.0000 2.2365 1.0000 8.225.2880 14.0000 10.0000 1.0000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 552.1909 29.3000 0.9965 0.0091 7.1667 0.0433 130.0000 0.0091 1,533.0000 0.22365 1.0000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4459 540.9746 27.7000 0.9962 0.0101 7.1667 0.0478 130.0000 0.0101 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	229.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 556.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 133.0000 0.0104 1.533.0000 0.22365 1.0000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 556.1928 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480 133.0000 0.0101 1,533.0000 0.22365 1.0000 8.225.2880 14.0000	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 532.2330 536.0541 24.3000 0.9966 0.0090 7.1667 0.0427 133.0000 0.0090 1.533.0000 0.22365 1.0000	266.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667 0.0393 130.0000 0.0083 1,533.0000 0.2.2365 1.0000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0074 7.1667 0.0352 130.0000 0.0074 1.533.0000 0.0074 1.533.0000 0.0074 1.533.0000 0.0074	24.4751 0.0032 0.0600 0.0063 0.0046 0.0078 516.0379 516.0379 252.1560 0.09976 0.09976 0.0063 7.1667 0.0063 7.1667 0.0063 1.533.0000 2.2385 1.0300 0.0063 1.533.0000 2.2385 1.0000
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (sisi): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Lquid Surface Temperature (sisi): Vapor Pressure at Daily Minimum Lquid Surface Temperature (sisi): Daily Aug. Liquid Surface Temp. (deg R): Daily Ams. Liquid Surface Temp. (deg R): Daily App. Saturation Factor: Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Molecular Weight (Ib/Ib-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Net Throughput (gal/mo.): Annual Tunovers: Turnover Factor: Maximum Liquid Valume (gal): Maximum Liquid Valume (gal): Maximum Liquid Height (f():	25.1089 0.0033 0.0600 0.0061 0.0044 0.0077 515.2115 508.9343 521.4887 28.0000 0.9977 0.0061 7.1667 0.0290 130.0000 130.0000 0.0061 1.533.0000 2.2365 1.0000 8.222.52880 14.0000	27.2425 0.0033 0.0600 0.0068 0.0048 0.0062 517.6343 510.8237 524.4450 29.0000 0.9974 0.0068 7.1667 0.0323 130.0000 0.0068 1,533.0000 0.22365 1.0000	30.5763 0.0031 0.0600 0.0078 0.0058 0.0090 521.9527 514.3086 529.5967 31.0000 0.9971 0.0078 7.1667 0.0368 130.0000 0.0078 1.533.0000 0.22365 1.0000 8.225.2880 14.0000	31.6726 0.0033 0.0600 0.0085 0.0070 0.0104 526.2999 518.3817 534.2180 30.4000 0.9968 0.0085 7.1667 0.0401 133.0000 0.0085 1.533.0000 0.2.2365 1.0000 8.225.2880 14.0000	31.6659 0.0037 0.0600 0.0091 0.0078 0.0115 530.1074 552.1909 29.3000 0.9965 0.0091 7.1667 0.0433 130.0000 0.0091 1,533.0000 0.22365 1.0000	30.9776 0.0042 0.0600 0.0101 0.0083 0.0125 533.2302 525.4459 540.9746 27.7000 0.9962 0.0101 7.1667 0.0478 130.0000 0.0101 1.533.0000 2.2365 1.0000 8.225.2880 14.0000	229.9923 0.0043 0.0600 0.0104 0.0085 0.0128 534.1708 556.6727 541.6688 26.9000 0.9961 0.0104 7.1667 0.0491 133.0000 0.0104 1.533.0000 0.22365 1.0000	28.9094 0.0039 0.0600 0.0101 0.0084 0.0124 533.4202 556.1928 540.6475 26.6000 0.9962 0.0101 7.1667 0.0480 133.0000 0.0101 1,533.0000 0.22365 1.0000 8.225.2880 14.0000	25.6420 0.0029 0.0600 0.0090 0.0080 0.0109 529.6435 532.2330 536.0541 24.3000 0.9966 0.0090 7.1667 0.0427 133.0000 0.0090 1.533.0000 0.22365 1.0000	266.2298 0.0025 0.0600 0.0083 0.0071 0.0096 525.2298 518.6724 531.7873 26.7000 0.9969 0.0083 7.1667 0.0393 130.0000 0.0083 1,533.0000 0.2.2365 1.0000	25.0671 0.0028 0.0600 0.0074 0.0056 0.0084 519.7639 513.4971 526.0307 27.3000 0.9972 0.0074 7.1667 0.0352 130.0000 0.0074 1.533.0000 0.0074 1.533.0000 0.0074 1.533.0000 0.0074	24.4751 0.032 0.0600 0.0063 0.0046 0.0078 516.0379 509.9192 27.6000 0.9976 0.0063 7.1667 0.0301 133.0000 0.0063 1.133.0000 2.2352 1.0000 1.0000

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

T-58 Fuel MMEX - Vertical Fixed Roof Tank Midland-Odessa, Texas

		Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions							
Distillate fuel oil no. 2	0.47	1.95	2.42							

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T-54/55 Diesel MMEX1 Midland-Odessa Texas MMEX Resource Corp Vertical Fixed Roof Tank Diesel Storage
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	40.00 75.00 39.00 20.00 1,288,873.25 26.76 34,492,500.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 3.00 0.08
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-54/55 Diesel MMEX1 - Vertical Fixed Roof Tank Midland-Odessa, Texas

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	Jan	55.54	49.26	61.82	63.30	0.0061	0.0044	0.0077	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074
Distillate fuel oil no. 2	Feb	57.96	51.15	64.77	63.30	0.0068	0.0048	0.0082	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074
Distillate fuel oil no. 2	Mar	62.28	54.64	69.93	63.30	0.0078	0.0058	0.0090	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	Apr	66.63	58.71	74.55	63.30	0.0085	0.0070	0.0104	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	May	70.44	62.52	78.35	63.30	0.0091	0.0078	0.0115	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Jun	73.56	65.82	81.30	63.30	0.0101	0.0083	0.0125	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Jul	74.50	67.00	82.00	63.30	0.0104	0.0085	0.0128	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Aug	73.75	66.52	80.98	63.30	0.0101	0.0084	0.0124	130.0000			188.00	Option 1: VP70 = .009 VP80 = .012
Distillate fuel oil no. 2	Sep	69.97	63.56	76.38	63.30	0.0090	0.0080	0.0109	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	Oct	65.56	59.00	72.12	63.30	0.0083	0.0071	0.0096	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	Nov	60.09	53.83	66.36	63.30	0.0074	0.0056	0.0084	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009
Distillate fuel oil no. 2	Dec	56.37	50.25	62.49	63.30	0.0063	0.0046	0.0078	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-54/55 Diesel MMEX1 - Vertical Fixed Roof Tank Midland-Odessa, Texas

Manda	Learner .	Eshavan	Marsh	A1	Maria	lun e	L.L.		0	O station	Marianakan	Deservition
Month:	January	February	March	April	May	June	July	August	September	October	November	December
Standing Losses (lb):	18.2392	19.8702	27.9036	30.0234	32.9695	33.9273	34.6712	32.6808	25.0134	24.8513	20.9532	18.3616
Vapor Space Volume (cu ft): Vapor Density (lb/cu ft):	92,775.1579 0.0001	92,775.1579 0.0002	92,775.1579 0.0001									
Vapor Space Expansion Factor:	0.0445	0.0484	0.0543	0.0559	0.0555	0.0539	0.0519	0.0500	0.0441	0.0456	0.0439	0.0432
Vented Vapor Saturation Factor:	0.9932	0.9925	0.9914	0.9907	0.9899	0.9889	0.9886	0.9889	0.9901	0.9909	0.9918	0.9930
Tank Vapor Space Volume:												
Vapor Space Volume (cu ft):	92,775.1579	92,775.1579	92,775.1579	92,775.1579	92,775.1579	92,775.1579	92,775.1579	92,775.1579	92,775.1579	92,775.1579	92,775.1579	92,775.1579
Tank Diameter (ft):	75.0000 21.0000											
Vapor Space Outage (ft): Tank Shell Height (ft):	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000
Average Liquid Height (ft):	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000
Roof Outage (ft):	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Roof Outage (Cone Roof)	1.0000	4 0000	4 0000	4 0000	4 0000	1.0000	1 0000	4 0000	4 0000	4 0000	4 0000	1 0000
Roof Outage (ft): Roof Height (ft):	3.0000	1.0000 3.0000	1.0000 3.0000	1.0000 3.0000	1.0000 3.0000	3.0000	1.0000 3.0000	1.0000 3.0000	1.0000 3.0000	1.0000 3.0000	1.0000 3.0000	1.0000 3.0000
Roof Slope (ft/ft):	0.0800	0.0800	0.0800	0.0800	0.0800	0.0800	0.0800	0.0800	0.0800	0.0800	0.0800	0.0800
Shell Radius (ft):	37.5000	37.5000	37.5000	37.5000	37.5000	37.5000	37.5000	37.5000	37.5000	37.5000	37.5000	37.5000
Vapor Density												
Vapor Density (lb/cu ft):	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.0061	0.0068	0.0078	0.0085	0.0091	0.0101	0.0104	0.0101	0.0090	0.0083	0.0074	0.0063
Daily Avg. Liquid Surface Temp. (deg. R):	515.2115	517.6343	521.9527	526.2999	530.1074	533.2302	534,1708	533.4202	529.6435	525.2298	519.7639	516.0379
Daily Average Ambient Temp. (deg. F):	42.5000	47.1000	55.7000	64.6000	72.7500	79.5500	81.9500	80.8000	73.2500	63.9500	52.5500	44.6000
Ideal Gas Constant R												
(psia cuft / (lb-mol-deg R)):	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731
Liquid Bulk Temperature (deg. R):	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650	522.9650
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700	0.1700 0.1700
Daily Total Solar Insulation	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700
Factor (Btu/sqft day):	1.039.6938	1.336.6585	1.734.5151	2.055.5923	2.220.5727	2.317.9746	2.231.9945	2.049.8815	1.711.3544	1.471.8155	1.136.7784	967.0390
Vapor Space Expansion Factor												
Vapor Space Expansion Factor:	0.0445	0.0484	0.0543	0.0559	0.0555	0.0539	0.0519	0.0500	0.0441	0.0456	0.0439	0.0432
Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia):	25.1089 0.0033	27.2425 0.0033	30.5763 0.0031	31.6726 0.0033	31.6659 0.0037	30.9776 0.0042	29.9923 0.0043	28.9094 0.0039	25.6420 0.0029	26.2298 0.0025	25.0671 0.0028	24.4751 0.0032
Breather Vent Press. Setting Range(psia):	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600
Vapor Pressure at Daily Average Liquid	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Surface Temperature (psia):	0.0061	0.0068	0.0078	0.0085	0.0091	0.0101	0.0104	0.0101	0.0090	0.0083	0.0074	0.0063
Vapor Pressure at Daily Minimum Liquid												
Surface Temperature (psia):	0.0044	0.0048	0.0058	0.0070	0.0078	0.0083	0.0085	0.0084	0.0080	0.0071	0.0056	0.0046
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	0.0077	0.0082	0.0090	0.0104	0.0115	0.0125	0.0128	0.0124	0.0109	0.0096	0.0084	0.0078
Daily Avg. Liquid Surface Temp. (deg R):	515.2115	517.6343	521.9527	526.2999	530.1074	533,2302	534.1708	533.4202	529.6435	525.2298	519.7639	516.0379
Daily Min. Liquid Surface Temp. (deg R):	508.9343	510.8237	514.3086	518.3817	522,1909	525,4859	526.6727	526.1928	523.2330	518.6724	513.4971	509.9192
Daily Max. Liquid Surface Temp. (deg R):	521.4887	524.4450	529.5967	534.2180	538.0239	540.9746	541.6688	540.6475	536.0541	531.7873	526.0307	522.1567
Daily Ambient Temp. Range (deg. R):	28.0000	29.0000	31.0000	30.4000	29.3000	27.7000	26.9000	26.6000	24.3000	26.7000	27.3000	27.6000
Martad Marta Octorettan Easter												
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.9932	0.9925	0.9914	0.9907	0.9899	0.9889	0.9886	0.9889	0.9901	0.9909	0.9918	0.9930
Vapor Pressure at Daily Average Liquid:	0.9932	0.5325	0.5314	0.5307	0.5099	0.5009	0.5000	0.5009	0.5901	0.5309	0.5310	0.5930
Surface Temperature (psia):	0.0061	0.0068	0.0078	0.0085	0.0091	0.0101	0.0104	0.0101	0.0090	0.0083	0.0074	0.0063
Vapor Space Outage (ft):	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000
Working Losses (Ib):	54.3335	60.5847	69.0862	75.2745	81.2394	89.5744	92.0847	90.0814	80.0342	73.7513	65.9705	56.4658
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000
Surface Temperature (psia):	0.0061	0.0068	0.0078	0.0085	0.0091	0.0101	0.0104	0.0101	0.0090	0.0083	0.0074	0.0063
Net Throughput (gal/mo.):	2,874,375.0000 2											
Annual Turnovers:	26.7617	26.7617	26.7617	26.7617	26.7617	26.7617	26.7617	26.7617	26.7617	26.7617	26.7617	26.7617
Turnover Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Maximum Liquid Volume (gal):	1,288,873.2538											
Maximum Liquid Height (ft):	39.0000 75.0000											
Tank Diameter (ft): Working Loss Product Factor:	75.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	75.0000	1.0000	1.0000	1.0000	75.0000
tronang 2000 Froduct actor.	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total Losses (lb):	72.5728	80.4548	96.9899	105.2979	114.2089	123.5017	126.7559	122.7622	105.0476	98.6026	86.9237	74.8274

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

T-54/55 Diesel MMEX1 - Vertical Fixed Roof Tank Midland-Odessa, Texas

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Distillate fuel oil no. 2	888.48	319.46	1,207.95						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T-52/53 Annual Naphtha MMEX Midland-Odessa Texas MMEX Resource Corp Internal Floating Roof Tank Naphtha Tanks - Annual Emissions	
Tank Dimensions		
Diameter (ft):	67.00	
Volume (gallons):	1,050,000.00	
Turnovers:	30.66	
Self Supp. Roof? (y/n):	N	
No. of Columns:	1.00	
Eff. Col. Diam. (ft):	0.70	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Liquid-mounted	
Secondary Seal	Rim-mounted	
Deck Characteristics		
Deck Fitting Category:	Detail	
Deck Type:	Welded	
Deck Fitting/Status		
Access Hatch (24-in. Diam.)/Bolted	Cover Gasketed	
Automatic Gauge Float Well/Bolted		
Column Well (24-in. Diam.)/Built-U		
Ladder Well (36-in. Diam.)/Sliding (
Roof Leg or Hanger Well/Adjustabl		
Sample Pipe or Well (24-in Diam)		

Sample Pipe or Well (24-in. Diam.)/Slotted Pipe-Sliding Cover, Gask. Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-52/53 Annual Naphtha MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapor	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 15.5)	Jan	55.54	49.26	61.82	63.30	7.7877	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Feb	57.96	51.15	64.77	63.30	8.1432	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Mar	62.28	54.64	69.93	63.30	8.8086	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Apr	66.63	58.71	74.55	63.30	9.5209	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	May	70.44	62.52	78.35	63.30	10.1812	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Jun	73.56	65.82	81.30	63.30	10.7492	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Jul	74.50	67.00	82.00	63.30	10.9250	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Aug	73.75	66.52	80.98	63.30	10.7845	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Sep	69.97	63.56	76.38	63.30	10.0989	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Oct	65.56	59.00	72.12	63.30	9.3415	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Nov	60.09	53.83	66.36	63.30	8.4662	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Dec	56.37	50.25	62.49	63.30	7.9076	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-52/53 Annual Naphtha MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

Month:	Januarv	February	March	April	Мау	June	July	August	September	October	November	December
Rim Seal Losses (lb):	18.9148	20.2976	23.1289	26.5970	30.3508	34.1512		34,4097	29.8484			19.3719
Seal Factor A (lb-mole/ft-vr):	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000			0.3000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000			0.6000
Value of Vapor Pressure Function:	0.2172	0.2330	0.2655	0.3054	0.3485	0.3921	0.4072	0.3951	0.3427	0.2948		0.2224
Vapor Pressure at Daily Average Liquid	0.2112	0.2000	0.2000	0.0001	0.0100	0.0021	0.1072	0.0001	0.0121	0.2010	0.2100	0.2221
Surface Temperature (psia):	7.7877	8,1432	8.8086	9.5209	10.1812	10,7492	10.9250	10.7845	10.0989	9.3415	8.4662	7.9076
Tank Diameter (ft):	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000			67.0000
Vapor Molecular Weight (lb/lb-mole):	52.0000	52.0000	52.0000	52,0000	52.0000	52.0000	52.0000	52.0000	52.0000			52.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			1.0000
Withdrawal Losses (lb):	7.6306	7.6306	7.6306	7.6306	7.6306	7.6306	7.6306	7.6306	7.6306	7.6306	7.6306	7.6306
Number of Columns:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			1.0000
Effective Column Diameter (ft):	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000			0.7000
Net Throughput (gal/mo.):	2,682,750.0000 2,											
Shell Clingage Factor (bbl/1000 soft):	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015		0.0015	0.0015			0.0015
Average Organic Liquid Density (lb/gal):	5.6000	5.6000	5.6000	5.6000	5.6000	5.6000	5.6000	5.6000	5.6000	5.6000	5.6000	5.6000
Tank Diameter (ft):	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000
Deck Fitting Losses (lb):	282.8753	303.5556	345.8977	397.7641	453,9032	510,7387	530.4255	514.6047	446.3896	383.9583	323.4681	289.7112
Value of Vapor Pressure Function:	0.2172	0.2330	0.2655	0.3054	0.3485	0.3921	0.4072	0.3951	0.3427	0.2948	0.2483	0.2224
Vapor Molecular Weight (lb/lb-mole):	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	300.6000	300.6000	300.6000	300.6000	300.6000	300.6000	300.6000	300.6000	300.6000	300.6000	300.6000	300.6000
Deck Seam Losses (lb):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length (ft):	705.1300	705.1300	705.1300	705.1300	705.1300	705.1300	705.1300	705.1300	705.1300	705.1300	705.1300	705.1300
Deck Seam Loss per Unit Length												
Factor (lb-mole/ft-yr):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000
Deck Seam Length Factor(ft/sqft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000
Tank Diameter (ft):	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000	67.0000			67.0000
Vapor Molecular Weight (lb/lb-mole):	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000	52.0000			52.0000
Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total Losses (Ib):	309.4208	331.4839	376.6572	431.9917	491.8847	552,5206	573.5238	556.6450	483.8686	417.2628	352.7279	316.7138
	000.1200	001.1000	010.0012	101.0011	101.0011		Roof Fitting Loss		100.0000	111.2020	002.1210	010.1100
Roof Fitting/Status				Quant	ity K	Fa(lb-mole/yr)	KFb(lb-mole/(yr			m	Losses(lb)	
Access Hatch (24-in, Diam,)/Bolted Cover, Gaskete	d				1	1.60		0.00		0.00	25,4952	
Automatic Gauge Float Well/Bolted Cover, Gaskete	d				1	2.80		0.00		0.00	44.6166	
Column Well (24-in. Diam.)/Built-Up ColSliding Co	ver, Gask.				1	33.00		0.00		0.00	525.8382	
Ladder Well (36-in, Diam,)/Sliding Cover, Gasketed					1	56.00		0.00		0.00	892.3314	
Roof Leg or Hanger Well/Adjustable					20	7.90		0.00		0.00	2,517.6494	
Sample Pipe or Well (24-in. Diam.)/Slotted Pipe-Slid	ding Cover, Gask.				1	43.00		0.00		0.00	685.1831	
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Act	tuation, Gask.				1	6.20		1.20		0.94	98.7938	
. , .												

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

T-52/53 Annual Naphtha MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

		Losses(lbs)											
Components	Rim Seal Loss	Rim Seal Loss Withdrawl Loss Deck Fitting Loss Deck Seam Loss Total Emissions											
Gasoline (RVP 15.5)	319.84	91.57	4,783.29	0.00	5,194.70								

Quantity 1

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T-52/53 Short Term Naphtha MMEX Midland-Odessa Texas MMEX Resource Corp Internal Floating Roof Tank Naphtha Tanks - Short Term Emissions
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers: Self Supp. Roof? (y/n): No. of Columns: Eff. Col. Diam. (ft):	67.00 1,050,000.00 150.17 N 1.00 0.70
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Light Rust White/White Good White/White Good
Rim-Seal System Primary Seal: Secondary Seal Deck Characteristics Deck Fitting Category:	Liquid-mounted Rim-mounted Detail
Deck Type: Deck Fitting/Status Access Hatch (24-in. Diam.)/Bolted Co	Welded
Access Fatch (24-in. Diam.)/Bolled CC Automatic Gauge Float Well/Bolled CC Column Well (24-in. Diam.)/Built-Up C Ladder Well (36-in. Diam.)/Sliding Cov Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Sli Vacuum Breaker (10-in. Diam.)/Weigh	over, Gasketed olSliding Cover, Gask. ver, Gasketed t Fabric Seal 10% Open

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-52/53 Short Term Naphtha MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapor	Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 15.5)	Jan	55.54	49.26	61.82	63.30	7.7877	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Feb	57.96	51.15	64.77	63.30	8.1432	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Mar	62.28	54.64	69.93	63.30	8.8086	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Apr	66.63	58.71	74.55	63.30	9.5209	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	May	70.44	62.52	78.35	63.30	10.1812	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Jun	73.56	65.82	81.30	63.30	10.7492	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Jul	74.50	67.00	82.00	63.30	10.9250	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Aug	73.75	66.52	80.98	63.30	10.7845	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Sep	69.97	63.56	76.38	63.30	10.0989	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Oct	65.56	59.00	72.12	63.30	9.3415	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Nov	60.09	53.83	66.36	63.30	8.4662	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3
Gasoline (RVP 15.5)	Dec	56.37	50.25	62.49	63.30	7.9076	N/A	N/A	52.0000			92.00	Option 4: RVP=15.5, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-52/53 Short Term Naphtha MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

Month: January February March April May June July August September October November December Rim Seal Losses (lb): 18.044 20.2076 23.1289 26.6970 30.3508 34.1512 35.4676 34.4097 29.8484 25.6739 21.6291 19.3719 Seal Factor A (lb-moleff-yr): 0.3000
Seal Factor A (b-mole/ft-yr): 0.3000 </td
Seal Factor B (ib-moleft-yr (mph)*n): 0.6000
Value of Vapor Pressure Function: 0.2172 0.2330 0.2655 0.3054 0.3485 0.3921 0.4072 0.3951 0.3427 0.2948 0.2483 0.2224 Vapor Pressure at Daily Average Liquid 5urface Temperature (pisa): 7.7877 8.1432 8.8086 9.5209 10.1812 10.7492 10.9250 10.7845 10.0989 9.3415 8.4662 7.9076 Tank Diameter (ft): 67.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (pia): 7.7877 8.1432 8.8086 9.5209 10.1812 10.7492 10.9250 10.7845 10.0989 9.3415 8.4662 7.9076 Tank Diameter (ft): 67.0000 <td< td=""></td<>
Surface Temperature (psia): 7.7877 8.1432 8.8086 9.5209 10.1812 10.7492 10.9250 10.7845 10.0889 9.3415 8.4662 7.9076 Tank Diameter (ft): 67.0000 67.0000 67.0000 67.0000 67.0000 67.0000 67.0000 67.0000 67.0000 67.0000 67.0000 67.0000 67.0000 67.0000 52.0
Tank Diameter (ft): 67.0000 52.0000
Vapor Molecular Weight (lb/lb-mole): 52.0000
Product Factor: 1.000000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000
Withdrawal Losses (lb): 37.3746 37.3748 37.3748 37.3788 3788 3788 3788 3788 3788 37888 37888 3788 37888 37888
Number of Columns: 1.0000
Effective Column Diameter (ft): 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
Net Throughput (gal/mo.): 13,140,000.0000000000000000000000000000000
Shell Clingage Factor (bbl/1000 sqft): 0.0015 0.001
Average Organic Liquid Density (lb/gal): 5.6000
Tank Diameter (ft): 67.0000
Deck Fitting Losses (lb): 253,7032 272,2508 310,2263 356,7438 407,0935 458,0677 475,7243 461,5350 400,3547 344,3618 290,1098 259,8342
Value of Vacor Pressure Function: 0.2172 0.2330 0.2655 0.3054 0.3485 0.3921 0.4072 0.3931 0.3427 0.2948 0.2483 0.2224
Vapor Molecular Weight (hib/b-mole): 52.0000000000
Product Factor: 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000
Tot. Roof Fitting Loss Fact. (Ib-mole/yr): 269.6000 269.6
Deck Seam Losses (lb): 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Deck Seam Length (t): 0.000000
Deck Seal Loss per Unit Lengun Factor (Homoleffwr): 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ratol (10-110-114-17), 0.00000 0.0000 0.0000 0.0000 0.00000 0.0000 0.000
Tank Diameter (ft): 67,0000 67
Tellin Dialitetti (h): 07.000 07
Vipol model and model (unit-mode). 22.0000 22.0000 02.0000 02.0000 02.0000 02.0000 22.0000 02.0000
Total Losses (lb): 309.9926 329.9230 370.7297 420.7154 474.8189 529.5935 548.5664 533.3193 467.5777 407.4102 349.1135 316.5806
Roof Fitting Loss Factors
Roof Fitting/Status Quantity KFa(lb-mole/yr) KFb(lb-mole/yrmph^n)) m Losses(lb)
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed 1 1.60 0.00 0.00 25.4952
Automatic Gauge Float Well/Bolted Cover, Gasketed 1 2.80 0.00 0.00 44.6166
Column Well (Ž4-in. Diam.)/Built-Up ColSliding Cover, Gask. 1 33.00 0.00 525.8382
Ladder Well (36-in. Diam.)/Silding Cover, Gasketed 1 56.00 0.00 892.3314
Roof Leg or Hanger Well/Adjustable 20 7.90 0.00 0.00 2,517.6494
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open 1 12.00 0.00 0.00 191.2139
Vacuum Breaker (10-in. Diam.)Weighted Mech. Actuation, Gask. 1 6.20 1.20 0.94 98.7938

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

T-52/53 Short Term Naphtha MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

		Losses(lbs)											
Components	Rim Seal Loss	Rim Seal Loss Withdrawl Loss Deck Fitting Loss Deck Seam Loss Total Emissio											
Gasoline (RVP 15.5)	319.84	448.49	4,290.01	0.00	5,058.34								

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T-59 Slop OII MMEX Midland-Odessa Texas MMEX Resource Corp Internal Floating Roof Tank Slop Oil Tank - Annual	
Tank Dimensions		
Diameter (ft):	25.00	
Volume (gallons):	84,000.00	
Turnovers:	47.66	
Self Supp. Roof? (y/n):	N	
No. of Columns:	1.00	
Eff. Col. Diam. (ft):	0.70	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Liquid-mounted	
Secondary Seal	Rim-mounted	
···· , ···		
Deck Characteristics		
Deck Fitting Category:	Detail	
Deck Type:	Welded	
Deck Fitting/Status		
Access Hatch (24-in. Diam.)/Bolted	Cover Casketed	
Automatic Gauge Float Well/Bolted		
Column Well (24-in. Diam.)/Built-U		
Ladder Well (36-in. Diam.)/Sliding		
Roof Leg or Hanger Well/Adjustabl		
Sample Pine or Well (24-in Diam)		

Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification:	T-59 Slop Oil MMEX - Hourly	
City:	Midland-Odessa	
State:	Texas	
Company:	MMEX Resource Corp	
Type of Tank:	Internal Floating Roof Tank	
Description:	SLOP Oil Tank - Hourly Emissions	
Tank Dimensions		
Diameter (ft):	25.00	
Volume (gallons):	84,000.00	
Turnovers:	1,192.81	
Self Supp. Roof? (y/n):	Ν	
No. of Columns:	1.00	
Eff. Col. Diam. (ft):	0.70	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Liquid-mounted	
Secondary Seal	Rim-mounted	
Deck Characteristics		
Deck Fitting Category:	Detail	
Deck Type:	Welded	
Deck Fitting/Status		
Access Hatch (24-in. Diam.)/Bolted	Cover, Gasketed	
Automatic Gauge Float Well/Bolted		
Column Well (24-in. Diam.)/Built-U		
Ladder Well (36-in. Diam.)/Sliding		
Roof Leg or Hanger Well/Adjustabl		
Comple Dine or Well (24 in Diem)		

Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-59 Slop Oil MMEX - Hourly - Internal Floating Roof Tank Midland-Odessa, Texas

			aily Liquid Su perature (de		Liquid Bulk Temp	Vapor	Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude Oil RVP 6	Jan	55.54	49.26	61.82	63.30	3.3963	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Feb	57.96	51.15	64.77	63.30	3.5567	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Mar	62.28	54.64	69.93	63.30	3.8577	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Apr	66.63	58.71	74.55	63.30	4.1808	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	May	70.44	62.52	78.35	63.30	4.4811	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Jun	73.56	65.82	81.30	63.30	4.7398	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Jul	74.50	67.00	82.00	63.30	4.8201	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Aug	73.75	66.52	80.98	63.30	4.7560	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Sep	69.97	63.56	76.38	63.30	4.4436	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Oct	65.56	59.00	72.12	63.30	4.0993	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Nov	60.09	53.83	66.36	63.30	3.7027	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Dec	56.37	50.25	62.49	63.30	3.4503	N/A	N/A	50.0000			207.00	Option 4: RVP=6

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-59 Slop Oil MMEX - Hourly - Internal Floating Roof Tank Midland-Odessa, Texas

Pim Seal Losses (b): 0.9212 0.9720 1.0666 1.1778 1.2216 1.3738 1.4029 1.3796 1.2644 1.1502 1.0100 0.3300	Month:	Januarv	Februarv	March	April	Mav	June	Julv	August	September	October	November	December
Seal Factor (b:molethyrr): 0.3000													0.9382
Seaf Each: P (ib-molet," (rinph)*h): 0.6000 0													0.3002
Value of Vapor Pressure Function: 0.0777 0.0778 0.0855 0.0942 0.1025 0.1099 0.1122 0.1104 0.1015 0.0920 0.0815 0.07 Surface Temperature (rgist): 3.3983 3.5667 3.8577 4.180 4.4411 4.7396 4.4438 4.0993 3.7027 3.45 Tank Dameter (rgist): 3.400 25.000 25.000 25.000 25.000 25.000 25.0000 25.000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 </td <td></td> <td>0.6000</td>													0.6000
Vapor Pressure at Daily Nerrage Liquid Surface Temperature (pisit): 3.3633 3.5567 3.8577 4.1808 4.4811 4.7388 4.8201 4.7560 24.438 4.0093 3.0727 3.4577 Tank Diameter (ft): 25.0000 25.0000 25.0000 25.0000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 57.000 0.7000 0.7000 0.7000 0.7000 0.7000 7.000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.10													0.0751
Šurtare Temperature (pita): 3.3863 3.5567 3.8577 4.188 4.4201 4.7360 4.4436 4.0933 3.7027 3.46 Vapor Maecular Weight (lb/b-mole): 50.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.0000 25.0000 25.0000 25.0000		0.0707	0.0170	0.0000	0.0012	0.1020	0.1000	0.1122	0.1101	0.1010	0.0020	0.0010	0.0701
Tark Diameter (t): 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 50.000 50.0000 50.0000 50.0000	Surface Temperature (psia):	3,3963	3.5567	3 8577	4,1808	4.4811	4,7398	4.8201	4,7560	4 4436	4 0993	3 7027	3.4503
Vapor Molecular Weight (Mibl-mole): 50.0000 50.000													25.0000
Product Factor: 0.4000 </td <td></td> <td>50.0000</td>													50.0000
Number of Columns: 1.0000		0.4000	0.4000	0.4000		0.4000	0.4000		0.4000	0.4000	0.4000	0.4000	0.4000
Number of Columns: 1.0000	Withdrawal Losses (lb):	344 5317	344 5317	344,5317	344.5317	344 5317	344.5317	344,5317	344 5317	344 5317	344.5317	344 5317	344,5317
Effective Column Diameter (ft): 0.7000 7.7000				1.0000			1.0000			1.0000			1.0000
Net Throughput (galma): S,760,000 0000 8,760,000 000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 8,760,000 0000 0,71000 7.1000													0.7000
Shell Clingage Factor (bb/1000 sqft); 0.0060													
Average Örganic Liquid Density (ibígal): 7.1000 <													0.0060
Tank Diameter (ft): 25.0000 50.0000 60.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000													7.1000
Value of Vapor Pressure Function: 0.0737 0.0778 0.0856 0.0942 0.1025 0.1099 0.1122 0.1101 0.0920 0.0815 0.000 Vapor Micessure Function: 0.4000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000													25.0000
Value of Vapor Pressure Function: 0.0737 0.0778 0.0856 0.0942 0.1025 0.1099 0.1122 0.1101 0.0920 0.0815 0.000 Vapor Micessure Function: 0.4000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Deck Fitting Losses (Ib):	22 4401	23 6789	26.0560	28 6900	31 2192	33 4656	34 1749	33 6076	30 8992	28 0177	24 8231	22.8554
Vapor Molecular Weight (Ib/Ib-mole): 50.0000													0.0751
Product Factor. 0.4000 182.7000 182.7000 182.7000 182.7000 182.7000 182.7000 182.7000 182.7000 182.7000 182.7000 0.0000 0.													50.0000
Tot. Roof Fitting Loss Fact. (b-mole/yr): 182.7000 0.0000 <td></td> <td>0.4000</td>													0.4000
Deck Seam Length (ft): 0.0000													182.7000
Deck Seam Length (ft): 0.0000	Deck Seam Losses (Ib):	0.0000	0 0000	0.0000	0.0000	0 0000	0 0000	0.0000	0 0000	0 0000	0.0000	0.0000	0.0000
Deck Seam Loss per Unit Length Factor (fhronelit-tyr): 0.0000<													0.0000
Fractor (Ib-mole/Th-yr); 0.0000 0.000 0.000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length Factor(fftsqft): 0.0000 0.000 0.0000 0.000		0.0000	0 0000	0.000	0 0000	0.0000	0 0000	0 0000	0 0000	0.000	0 0000	0 0000	0.0000
Tank Diameter (ħ): 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 50.0000													0.0000
Vapor Molecular Weight (Ib/Ib-mole): 50.0000													25.0000
Product Factor: 0.4000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50.0000</td></t<>													50.0000
Roof Fitting/Status Quantity KFa(lb-mole/lyr m Losses(lb) Access Hath (24-in. Diam.)/Bolted Cover, Gasketed 1 1.60 0.00 2.9796 Automatic Gauge Float Well/Bolted Cover, Gasketed 1 2.80 0.00 6.01 Column Well (24-in. Diam.)/Bolted Cover, Gasketed 1 33.00 0.00 6.14548 Ladder Well (36-in. Diam.)/Bilding Cover, Gasketed 1 56.00 0.00 104.2889 Roof Fitting Ustatus 9 7.90 0.00 132.4071 Sample Pipe or Well (24-in. Diam.)/Silting Exbris Cseal 10% Open 1 12.00 0.00 0.02.32472	Product Factor:												0.4000
Roof Fitting/Status Quantity Roof Fitting Loss Factors KFb(b-mole/yr mph*n)) m Losses(b) Automatic Gauge Float Well/Bolted Cover, Gasketed 1 1.60 0.00 2.9796 Automatic Gauge Float Well/Bolted Cover, Gasketed 1 2.80 0.00 5.2143 Column Well (24-in. Diam.)/Built-Up ColSilding Cover, Gasketed 1 33.00 0.00 6.14548 Ladder Well (36-in. Diam.)/Bilding Cover, Gasketed 1 66.00 0.00 104.2889 Roof Fitting Uss Factors 1 56.00 0.00 104.2889 Roof Leg or Hanger Well/Ajustable 9 7.90 0.00 132.4071 Sample Pipe or Well (24-in. Diam.)/Sith Fabric Seal 10% Open 1 12.00 0.00 0.00 22.3472													
Roof Fitting/Status Quantity KFa(lb-mole/yr KFb(lb-mole/yr mph^n)) m Losse(b) Access Hatch (24-in. Diam, JBoilted Cover, Gasketed 1 1.60 0.00 2.9796 Automatic Gauge Float Well/Boited Cover, Gasketed 1 2.80 0.00 0.00 5.2143 Column Well (24-in. Diam, JBuilt-Up Col-Siliding Cover, Gasketed 1 33.00 0.00 0.00 61.4548 Ladder Well (36-in. Diam, Siliding Cover, Gasketed 1 56.00 0.00 0.04.2869 Roof Leg or Hanger Well/Adjustable 9 7.90 0.00 0.00 132.4071 Sample Pipe v Well (24-in. Diam, JSilit Fabric Seal 10% Open 1 12.00 0.00 0.00 23.3472	Total Losses (lb):	367.8930	369.1827	371.6574	374.3995	377.0325	379.3711	380.1096	379.5189	376.6993	373.6996	370.3738	368.3254
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed 1 1.60 0.00 0.00 2.9796 Automatic Gauge Float Well/Bolted Cover, Gasketed 1 1.80 0.00 6.2143 Columm Vell (24-in. Diam.)/Biolted Jover, Gasketed 1 3.300 0.00 6.14548 Ladder Well (36-in. Diam.)/Silding Cover, Gasketed 1 56.00 0.00 104.2869 Roof Leg or Hanger Well/Adjustable 9 7.90 0.00 132.4071 Sample Pipe or Well (24-in. Diam.)/Siltr Jabric Seal 10% Open 1 12.00 0.00 22.3472	De of Fille - Obeles				0							1 (0-)	
Automatic Gauge Float Weil/Bohted Cover, Gasketed 1 2.80 0.00 0.00 5.2143 Column Weil (24-in, Diam,)/Built-Up ColSilding Cover, Gasketed 1 33.00 0.00 61.4548 Ladder Weil (36-in, Diam,)/Built-Up ColSilding Cover, Gasketed 1 56.00 0.00 104.2889 Root Leg or Hanger Weil/Adjustable 9 7.90 0.00 0.00 132.4071 Sample Pipe or Weil (24-in, Diam,)/Siltri Fabric Seal 10% Open 1 12.00 0.00 0.02.32472					Quantity			KFD(ID-mole/(yr	r //				
Column Well (24-in. Diam.)/Built-Up ColSilding Cover, Gask. 1 33.00 0.00 61.4548 Ladder Well (36-in. Diam.)/Silding Cover, Gasketed 1 56.00 0.00 104.2869 Roof Leg or Hanger Well (Adjustable 9 7.90 0.00 132.4071 Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open 1 12.00 0.00 0.22.3472					1								
Ladder Well (36-in. Diam.)/Silding Cover, Gasketed 1 56.00 0.00 104.2899 Roof Leg or Hanger Well (34-in. Diam.)/Silding Lover, Gasketed 9 7.90 0.00 132.4071 Sample Pipe or Well (24-in. Diam.)/Silding Lover, Gasketed 1 12.00 0.00 22.3472					1								
Roof Leg or Hanger Well/Adjustable 9 7.90 0.00 0.00 132.4071 Sample Pipe or Well (24-h. Dism.)Silf Fabric Seal 10% Open 1 12.00 0.00 22.3472		/er, Gask.			1								
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open 1 12.00 0.00 22.3472					1								
					9)							
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. 1 6.20 1.20 0.94 11.5461					1								
	Vacuum Breaker (10-In. Diam.)/Weighted Mech. Act	uation, Gask.			1	1	6.20		1.20	(J.94	11.5461	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

T-59 Slop Oil MMEX - Hourly - Internal Floating Roof Tank Midland-Odessa, Texas

		Losses(lbs)											
Components	Rim Seal Loss	Rim Seal Loss Withdrawl Loss Deck Fitting Loss Deck Seam Loss Total Emissi											
Crude Oil RVP 6	13.95	4,134.38	339.93	0.00	4,488.26								

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-59 Slop Oll MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

			aily Liquid Si perature (de		Liquid Bulk Temp	Vapor	Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude Oil RVP 6	Jan	55.54	49.26	61.82	63.30	3.3963	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Feb	57.96	51.15	64.77	63.30	3.5567	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Mar	62.28	54.64	69.93	63.30	3.8577	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Apr	66.63	58.71	74.55	63.30	4.1808	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	May	70.44	62.52	78.35	63.30	4.4811	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Jun	73.56	65.82	81.30	63.30	4.7398	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Jul	74.50	67.00	82.00	63.30	4.8201	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Aug	73.75	66.52	80.98	63.30	4.7560	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Sep	69.97	63.56	76.38	63.30	4.4436	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Oct	65.56	59.00	72.12	63.30	4.0993	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Nov	60.09	53.83	66.36	63.30	3.7027	N/A	N/A	50.0000			207.00	Option 4: RVP=6
Crude Oil RVP 6	Dec	56.37	50.25	62.49	63.30	3.4503	N/A	N/A	50.0000			207.00	Option 4: RVP=6

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-59 Slop Oll MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

Month:	Januarv	February	March	April	Mav	June	Julv	August	September	October	November	December
Rim Seal Losses (Ib):	0.9212	0.9720	1.0696	April 1.1778	1.2816	1.3738	1.4029	August 1.3796	September 1.2684	1.1502	1.0190	0.9382
Seal Factor A (lb-mole/ft-vr):	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000
Value of Vapor Pressure Function:	0.0737	0.0778	0.0856	0.0942	0.1025	0.1099	0.1122	0.1104	0.1015	0.0920	0.0815	0.0751
Vapor Pressure at Daily Average Liquid	0.0707	0.0770	0.0000	0.0342	0.1020	0.1033	0.1122	0.1104	0.1015	0.0320	0.0010	0.0751
Surface Temperature (psia):	3.3963	3.5567	3.8577	4,1808	4,4811	4,7398	4.8201	4,7560	4,4436	4.0993	3,7027	3,4503
Tank Diameter (ft):	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000
Vapor Molecular Weight (lb/lb-mole):	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Withdrawal Losses (lb):	13,7655	13,7655	13,7655	13.7655	13,7655	13,7655	13,7655	13,7655	13,7655	13,7655	13,7655	13,7655
Number of Columns:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Effective Column Diameter (ft):	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000
Net Throughput (gal/mo.):	350,000.0000	350.000.0000	350.000.0000	350.000.0000	350.000.0000	350.000.0000	350.000.0000	350.000.0000	350.000.0000	350,000.0000	350.000.0000	350.000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060
Average Organic Liquid Density (Ib/gal):	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7.1000	7,1000	7.1000	7.1000	7,1000
Tank Diameter (ft):	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000
	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000
Deck Fitting Losses (lb):	22.4401	23.6789	26.0560	28.6900	31.2192	33.4656	34.1749	33.6076	30.8992	28.0177	24.8231	22.8554
Value of Vapor Pressure Function:	0.0737	0.0778	0.0856	0.0942	0.1025	0.1099	0.1122	0.1104	0.1015	0.0920	0.0815	0.0751
Vapor Molecular Weight (lb/lb-mole):	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	182.7000	182.7000	182.7000	182.7000	182.7000	182.7000	182.7000	182.7000	182.7000	182.7000	182.7000	182.7000
Deck Seam Losses (lb):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length (ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Loss per Unit Length												
Factor (lb-mole/ft-vr):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tank Diameter (ft):	25.0000	25,0000	25,0000	25.0000	25.0000	25,0000	25,0000	25,0000	25,0000	25.0000	25,0000	25.0000
Vapor Molecular Weight (lb/lb-mole):	50,0000	50,0000	50,0000	50.0000	50.0000	50,0000	50.0000	50,0000	50,0000	50.0000	50,0000	50,0000
Product Factor:	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
Total Losses (lb):	37.1269	38.4165	40.8912	43.6333	46.2663	48.6049	49.3434	48.7527	45.9331	42.9334	39.6076	37.5592
De a Crittia a Otatua				Quan			oof Fitting Loss				1 (0-)	
Roof Fitting/Status				Quan			KFb(lb-mole/(yr			m	Losses(lb)	
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed					1	1.60		0.00		0.00	2.9796	
Automatic Gauge Float Well/Bolted Cover, Gasketed					1	2.80		0.00		0.00	5.2143	
Column Well (24-in. Diam.)/Built-Up ColSliding Cover, Gi	ask.				1	33.00		0.00		0.00	61.4548	
Ladder Well (36-in. Diam.)/Sliding Cover, Gasketed					1	56.00		0.00		0.00	104.2869	
Roof Leg or Hanger Well/Adjustable					9	7.90		0.00		0.00	132.4071	
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% O					1	12.00		0.00		0.00	22.3472	
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation	I, Gask.				1	6.20		1.20	L L	0.94	11.5461	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

T-59 Slop Oll MMEX - Internal Floating Roof Tank Midland-Odessa, Texas

		Losses(lbs)											
Components	Rim Seal Loss	Rim Seal Loss Withdrawl Loss Deck Fitting Loss Deck Seam Loss Total Emissic											
Crude Oil RVP 6	13.95	165.19	339.93	0.00	519.07								

Input Form for Stock Properties return to: MainMenu Enter Stock Property data on this page, and Tank Property data on page: Input_Tank Enter Floating Roof data (incl. entry of No Floating Roof for Fixed-Roof Tanks) on page: Input_FloatingRoof

Input Form 1 of 3

	urn to: MainMenu						data (incl. entry of No		for Fixed-Roof Tanks) on page	ge: Input_Floatin	gRoof		
	rrent period results	:		Select the month		Company:		Location:					
TankSumr	naries			ANNUAL 🔻	2017 🔻	MMEX Resour	ces Corporation		Midland-Odessa				
	date reports with t						r meteorological da						
currer	it month's data, go		_				Atmospheric Pressur		annual average (psia)		-		
		hlyData		verage Conditio	ns this period:		Total Solar Insolatio		average (Btu/ft ² day)				
select Tan		oll to the rig inge of Se					Ambient Temperatur Ambient Temperatur		average (degrees F) average (degrees F)				
from the			e right for			Wind Speed =			average (mph)				
drop-down		ng Roof L		if sto	ored								
after enter			o the right for	at ambient			te entries below	RVP	Enter data in these fields				
Tank ID N		nk Cleani		leave the			for each service, but only one Rec entry per tank on the other pgs whe						
on page Input_Ta		ghput Thi	riate units	Bulk Storage	Is the Tank Insulated?		entry per tank on the other pgs scroll right to enter dates/days			Crude oil (C) or refined	<u>Mv</u> Vapor	<u>WI</u> Liquid	True Vapor
Tank	select 'feet' if e			Temperature	If constant temp,		roleum Liquid	color is:	Name (description)	stock (R)?	Molecular	Density	Pressure
ID No.			GALLONS 🔻	(degrees F)	enter Y	select f	from menu	<u>(psi)</u>	of the stock	enter letter	Weight	(lb/gal)	<u>(psia)</u>
56	•		21,462,000	250.00	Ν	Straight Resid	•						
57	•		21,462,000	250.00	Ν	Straight Resid	•						
	•					-	•						
	•						-						
	•						-						
-	•					<u> </u>	•						
	•						•						
	•						•						
	•						-						
	•					<u>.</u>	•						
-	•						•						
	•						-						
-	•						-						
-	•					-	-						
	•						•						
	•						-						
	-						•						
	•												\downarrow
	•						•						<u> </u>
	•						•						\downarrow
	•					1	•						<u> </u>
<u> </u>	•						•	_					<u> </u>
	•						•	_					<u> </u>
	•						•	_					<u> </u>
	•						•						

				:		1		1						1												
Inp	ut For	m for S	torage	Tank Properties	Α		A		A	aluminum-colored p		0.39	0.49			Input	Form 2 of 3	3								
						Tank	В	Tank	В	aluminum-colored p		0.60	0.68	Solar												
					C	Shell Finish	C	Roof Finish	C	beige/cream-colored	l paint	0.35	0.49	Absorptan	ice				In fields for							
						Finish	E	Finish	F			0.58	0.63	values Guide to fir					enter the va							
						-	F			light gray paint medium gray paint		0.68	0.63		is for Good condition				settings, If a							
		aturn to l		vice	G	-	G		F G	black paint		0.68	0.97		is for Good condition				enter 0 - rec							
		o to Input			G H	-	В		н	red primer or dark o	roon point	0.89	0.97	right colum	in is for Poor condition				vents that n			is of any o	ther			
	G	o to mpu	Filoating	grooi		-				rust (unpainted iron		0.89	0.91	-					vents that h	nay be pres	sent.					
		Onco tan	data ha	ve been entered.	j	-				tan paint	OAIGB)	0.43	0.55	-				Add'l info for		Add1 FRT v	ont info for		Add'l info	Add'l info	Add'l info for	Add'l info for
				are required only in	ĸ	condition	ĸ	condition	ĸ	white paint		0.45	0.34	-				hourly		NSR permi		ne	for TX NSR	for TX NSR	determining	determining
				a tank configuration.		of the	L L	of the	L L	mill finish aluminum	(unpainted)	0.10	0.15	-				emission	1.	Table		13	permit appl's	permit appl's	NSPS	MACT
	the ev	on or a v	mange to	o a tank configuration.		tank shell		tank roof		is below are require				I to the right	nt for TX add'l input}			rates	E.	nter the quar			(Tables 7(c) & (d))	{Table 7(c)}	applicability	applicability
lis	et fo	r horizont	al tanks	Fixed Roof Type		finish,		finish,		ettings default to typic			Aax. defaults to	Roof	in for the add t inputy	These only	y differ from	Maximum		ot include er			Condition of	[100:07(0)]	Date Tank	Associated
63		enter the		A column-supported(cone)		enter:		enter:	Nominal	Vent Relievin			height) - 1ft];	Slope	Vapor Recovery?		alues for the	Pump Rate	Enter	either Combi	nation P/V	vents	Inside of Shell	Construction	was Built	Source Categ.
Ta		length i		B self-supporting (dome)		G G		G G	Operating	Minimum	Maximum		aults to 1 foot.		If routed to vapor recovery,			s max fill or		e P & V ven			L Light rust	of Tank Shell	or last	R Petroleum Refining
00				C no fixed roof (open top)	enter	for good.	enter	for good.	Pressure	(neg. if vacuum)	Pressure		id Levels		enter the VRU efficiency	Effective		discharge rate	Copulat		ito, or opon	vonto.	D Dense rust	W Welded	reconstr'd	H Organic Chem Mfr (HON)
on		Tank	Tank	OR	the	or	the	or		ith typical breather (co		Max.	Min.		(blank, if no vapor recovery;		Tank	whichever is	Comb P/V	Sep	arate	Open	G Gunite lined	R Riveted		O OLD
Ta				D horizontal tank	code	P	code	P	enter (0)	enter (-0.03)	enter (0.03)				100% if routed to fuel gas)		Height	greater	vents		V-vent	vents	defaults to L	defaults to W		G Gas.Distrib.
ID I		(feet)	(feet)	enter the code letter	letter	for poor	letter	for poor	(psig)	(psig)	(psig)	(feet)	(feet)	in. per ft.	(%)	(feet)	(feet)	(gal/hr)	(atv)	(atv)	(qty)	(qty)	enter code letter	enter code letter		enter code letter
5		67	40	Δ	К	G	К	G		1000	10	1.001/				67	40	18.000	13.04	1400	1444	(17)	1	W		
-	· .	-	-													-							-			
5	7	67	40	A	К	G	К	G								67	40	18,000					L	W		
_							_																			
							_											_								
							_											_								
					1								1	1				1					1		1	
					1	1	1	1						1												
-	_						-	+																	l	<u> </u>
						1	1		I	1				1					I							
					1								1	1				1					1		1	
					1		1																			
						1	1	1	1	1			1	1					1				1			

		ng-Roof Tanks:		Rim Seal Type	Unslotted	Guidepole 1	Гуре		For emiss	sions estimate	s, any	
	Entry is re	equired for <u>every</u> field except F	Floating Roof Type and	Welded Tanks, Avg-Fitting Rim Seals	Guidepole	Deck Cover	Pole	Pole	guidepole	e type can be e	entered	
	the Optior	al Data Entry fields for Deck I	Fittings (to the far right),	Mechanical-Shoe Primary Seal	Code	Gasket	Wiper	Sleeve	into either field. However, for			
	all of which	ch will default as indicated if le	eft blank.	A with NO Secondary Seal	Α	No	No	No	No TCEQ Table 7, use of 'Uns			
	Re	turn to Input_Service		B w/ Shoe-Mtd Secondary Seal	В	YES	No	No	& 'Slotted	d' must be follo	wed.	
	Return to Input_Tank			C w/ Rim-Mtd Secondary Seal	C	No	No	YES		ed? is required		
	Once floating roof data have been entered, subsequent entries			Liquid-Mounted Primary Seal	D	YES	No	YES		able 7 when se		
	are required only in the event of a change to a floating roof.			D with NO Secondary Seal	E	YES	YES	No		it does not affe	ect the	
	Floating Roof Type			E with a Weather Shield			idepole Typ	e		s estimate.	-	
			A steel pontoon-type EFR (API 650 App.C-type)	F w/ Rim-Mtd Secondary Seal		Guidepole	Deck Cover		Pole	Pole		
			(default for EFRTs and Domed EFRTs)	Vapor-Mounted Primary Seal		Code	Gasket	Float	Wiper	Sleeve	4	
			B steel double-deck EFR (API 650 App.C-type)	G with NO Secondary Seal		F	Y or N	No	No	No	4	
			C alum. bolted deck IFR (API 650 App.H-type)	H with a Weather Shield		G	Y or N	YES	No	No	4	
		E 1 D 1 C T 1	(default for IFRTs)	I w/ Rim-Mtd Secondary Seal		н	YES	No	YES	No		
		Fixed Roof Type	click here to enter bolted deck constr.	Add'l Mech-Shoe Seals, Special Conditions			YES	No	No	YES	Diameter	
		A column-supported(cone)	D steel welded deck IFR (API 650 App.H-type)	J w/ NO Secondary Seal - tight fitting		J	YES	YES	YES	No	(to nearest	
		B self-supporting (dome)	(includes steel-pan type) OR	K w/ Rim-Mtd Secondary Seal - tight fitting k w/ NO Sec Riveted Tank (loose fitting)		ĸ	YES YES	No YES	YES YES	YES	10 feet, for	
		C no fixed roof (open top)		(C,			-	-	-	YES	estimating	
Tank ID No.	Diameter	D horizontal tank	E no floating roof (Fixed-Roof Tank) enter the code letter	M w/Rim-Mtd SecRiveted Tank(loose fitting) enter the code letter	Unslotted code letter			Slotted G code letter		Gasketed*?	deck fitting	
	(feet)					<u>quantity</u>	_	code letter	quantity	<u>II SO, enter r</u>	quantity)	
56	67	A	E								70	
57	67	A	E								70	
											1	
							-				4	
	1										4	
							4				4	
							1				1	
				<u> </u>		l	l I					

<u>C</u>	Company	MMEX Resources Corp	Location						
						_			
Period	Year	Avg. Conditions	<u>Temp (°F)</u>	delta T	Insolation	Wind Speed			Is this a
ANNUAL	2017	This Period	63.3	27.9	1689	11.12			Landing
Return to Input_Service						Liquid T	emp	Avg	Loss
Tank	Diam.			RVP	Throughput	Bulk	Surface	TVP	(or Initial Fill)
ID No.	(feet)	Tank Type	Product	<u>(psi)</u>	(gallons)	<u>(deg F)</u>	<u>(deg F)</u>	<u>(psia)</u>	Event
56	67	FRT(no floating roof)	Straight Resid		21,462,000	250.0	170.1	0.00	No
57	67	FRT(no floating roof)	Straight Resid		21,462,000	250.0	170.1	0.00	No

SPECIATED EMISSIONS THIS PERIOD (pounds) to the right=>

Days	Days	Estimated		VRU		Estimated	ls a vapor	Total Estimated
this	this	<u>This Pe</u>	This Period		Does this	Emissions	control	Emissions
Period	<u>Period</u>	<u>Standing</u>	<u>Working</u>	<u>Efficiency</u>	include a	<u>This Period</u>	device	<u>This Period</u>
in this	Cleaning	If Floating Ro	of Landing	normal	Tank	from	used	Total
Service	this Tank	<u>or Initia</u>	al Fill	operations	Cleaning	Tank	during tank	Emissions
<u>(days)</u>	<u>(days)</u>	Standing Idle	<u>Refilling</u>	<u>(%)</u>	<u>Event</u>	<u>Cleaning</u>	<u>cleaning?</u>	<u>(lbs)</u>
365	0	44	117	0.00%	No	0		161
365	0	44	117	0.00%	No	0		161

Hourly Emission	S	Company:	MMEX Reso	ources Cor	Location:	Midland-Od	essa
Return to	Total	Permit				Permit	
Input_Service	Emissions	Limits	check		Benzene	Limits	check
Tank	(lb/hr)	(lb/hr)		Tank	(lb/hr)	(lb/hr)	
<u>ID No.</u>	2017			<u>ID No.</u>	2017		
This report show	vs estimated	short-term	emissions b	ased on cu	irrent service	e, calc'd per	TCEQ guid
56	0.12	NA	no limit	56	0.021	NA	no limit
57	0.12	NA	no limit	57	0.021	NA	no limit

Unit Input.prn A LISTING OF INPUT SPECIFICATIONS FOR EACH UNIT 07-25-2017

Retention Pond
25
43
3
18
0. 05
0
0
19
0
0

Summary.	prn
----------	-----

WASTEWATER TREATMENT SUMMARY I 07-25-2017 18:06:31

Project C: \Users\XLiu\Downloads\MMEX\Lagoon\Lagoon 2017-0725 1805 XL COMPOUND RATE Fraction_____ (g/s) Air Removal Exit Adsorb

error emissions

TRI METHYLPENTANE 2, 2, 4	1.16E-05 .04176	. 9344	. 0239	0. 0000
0.0000 (3.65E-04 Mg/yr) BENZENE	1.18E-03.09623	. 8552	. 0486	0.0000
0.0000 (3.72E-02 Mg/yr)	4 405 07 00007	0 (40	0101	0 0000
BIPHENYL 0.0000 (3.56E-06 Mg/yr)	1.13E-07 .02237	. 9643	. 0134	0.0000
CRESOL	1.09E-07.00002	. 9954	. 0046	0.0000
0.0000 (3.42E-06 Mg/yr) CUMENE (i sopropyl benzene)	6.53E-06.04316	. 9316	. 0253	0.0000
0.0000 (2.06E-04 Mg/yr)	0.332-00 .04310	. 7510	. 0200	0.0000
ETHYLBENZENE 0.0000 (2.00E-03 Mg/yr)	6.36E-05.06005	. 9061	. 0339	0.0000
HEXANE(-n)	4.78E-05.08239	. 8712	. 0464	0.0000
0.0000 (1.51E-03 Mg/yr) METHYL TERT-BUTYL ETHER	1.23E-03.10286	. 8071	. 09	0.0000
0.0000 (3.89E-02 Mg/yr)	1.232-03 .10200	. 0071	. 09	0.0000
NAPHTHALENE	2.79E-05.11054	. 825	. 0645	0.0000
0.0000 (8.78E-04 Mg/yr) PHENOL	3.57E-06.00036	. 9936	. 006	0.0000
0.0000 (1.13E-04 Mg/yr)			0007	
ETHENYLBENZENE (styrene) 0.0000 (1.49E-02 Mg/yr)	4.72E-04 .4254	. 3359	. 2387	0.0000
TOLUENE	5.41E-04 .0552	. 9149	. 0299	0.0000
0.0000 (1.71E-02 Mg/yr) XYLENE	2.90E-04 .07199	. 8893	. 0387	0.0000
0.0000 (9.15E-03 Mg/yr)				
BUTADI ENE-(1, 3) 0.0000 (1.36E-04 Mg/yr)	4.31E-06.17096	. 7451	. 0839	0.0000
BUTANE	4.27E-02.21793	. 6768	. 1053	0.0000
0.0000 (1.35E+00 Mg/yr)				

TOTAL ALL COMPOUNDS TOTAL ALL COMPOUNDS 4.66E-02 g/s air emissions 1.47E+00 Mg/yr air emissions