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COMMUNITY DESIGN, STREET NETWORKS, AND PUBLIC HEALTH

ABSTRACT

What is the influence of street network design ohlig health? While the literature linking the
built environment to health outcomes is vast, disges over the role that specific street network
characteristics play. The three fundamental elésnaeinstreet networks are: street network
density, connectivity, and configuration. Withauifficient attention being paid to these
individual elements of street network design, baida community for health remains a
guessing game. Our previous study found more cohgral connected street networks highly
correlated with increased walking, biking, and siansage; while these trends suggest a health
benefit, this study seeks to strengthen that cdrorec

Using a multilevel, hierarchical statistical modeis research seeks to fill this gap in the
literature through a more robust accounting ofettreetwork design. Specifically, we ask the
following: what is the influence of the three fungental measures of street networks on obesity,
diabetes, high blood pressure, heart disease,sdhcha? We seek to answer this question by
examining 24 California cities exhibiting a rangstaeet network typologies using health data
from the California Health Interview Survey.

We control for the food environment, land uses, gmting time, socioeconomic status, and
street design. The results suggest that more attmapd connected street networks with fewer
lanes on the major roads are correlated with retluates of obesity, diabetes, high blood
pressure, and heart disease among residents. uitente is a novel assessment of streets
networks and public health that has not yet been bat will be of great benefit to planners and
policy-makers.
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I NTRODUCTION

Inquiries into the built environment’s impact orgia health in the United States evolved
appreciably over the last 150 years. In the edalys of the U.S. Sanitary Commission, the
focus was on just what the name implies: ensuramitgry conditions in citiegTise, 2013).
Deaths from diseases such as cholera, tubercufoalaria, and typhoid fever were not formally
linked to built environment issues such as pooitadon and close proximities until the 1840s
when a German doctor named Rudolf Virchow lookegbhd medicinal answers and instead
recommended solving these problems with changtgetbuilt environmen{Corburn, 2013).
Frederick Law Olmstead, founding director of th&lUSanitary Commission, also understood
this link between health and the built environmamd brought similar lessons to military camps
during the Civil War(Fisher, 2010). With the spread of manufacturing during the finstl a
second industrial revolutions, the health/builtiemvment discussion shifted toward industrial
pollution (Rosen, 2003). Today, obesity and obesity-reldiselases represent the bulk of the
literature focusing on the connection between heatd the build environment. Instead of
being preceded by something as direct as indugti&ition, the obesity epidemic was instead
preceded by a drastic shift in the way we lay aut@mmunities.

Prior to the twentieth century, compact and corewstreet networks were long held as the
standard upon which to build a city. Dating astfack as the earliest known existence of a
gridded street network pattern in the city of Mgbebaro, New Delhi, from at least 2,500 B.C.
(Stanislawski, 1946). This thinking extended itite gridiron plans of the ancient Greeks and
Romans to the organic, medieval patterns foundsadearope and eventually in the New World.
The Renaissance helped bring orthogonal, rectilinetworks back into vogue, and these street
network patterns eventually found their way intdyebl.S. cities such as New Haven and
Philadelphia in the mid-1600s. The trend continaegbss the U.S. and eventually expanded to
suburban areas, particularly during the late 189@®njunction with the burgeoning use of
streetcars. Despite some variation through thesy#ais approach to assembling cities saw a
complete overhaul over the course of th® 26ntury. The compact and connected ways that
we built our cities for the last few thousand yeguigckly evolved into much sparser, dendritic
street networks, as depicted in Figure 1 (Southwand Ben-Joseph, 1997). The existing
literature suggests that our older cities can Fadpitate less driving and more active
transportation (Frank et al., 2007; Handy et @102 Marshall and Garrick, 2010a; Pendola and
Gen, 2007). But do they actually have a measuraldiic health benefit as well? Some
researchers answer yes to this question (Daviso.awson, 2006; Dunton et al., 2009; Frank
et al., 2001; Grafova, 2008; Williams et al., 2Qidther researchers find no significant
relationship between built environmental varialdad public health outcomes (Eid et al., 2008;
Kirk et al., 2010; Sallis and Glanz, 2006). Onéeptial reason for these discrepancies is that
while most studies include a measure or two okstnetwork design, no study of obesity or
public health has accounted for the complete raigéreet network elements.

This research seeks to fill this gap in the literatby fully accounting for street network design

so that we can better understand the role thagtstetworks play in public health. Specifically,

we ask the following: what is the influence of theee fundamental measures of a street network
— street network density, connectivity, and confagion — on obesity, diabetes, high blood
pressure, heart disease, and asthma? The studyteenswer this question by examining 24
medium-sized California cities exhibiting a rangstr@et network typologies via obesity and
health data from the California Health Interviewn&y (CHIS). In a previous study, we found



more compact and connected street networks toghdyhtorrelated with increased walking,
biking, and transit usage (Marshall and Garrick,@9). While these trends suggest a public
health benefit, this study seeks to better undedstiais link to actual health outcomes and health
disparities. Health disparities are the differenicehealth by gender, race or ethnicity,
education, income, sexuality, or geographic locatiat aré'not only unnecessary and

avoidable but, in addition, are considered unfamdaunjust” (Braveman, 2006; U.S. DHHS,
2010; Whitehead, 1992). Using a multilevel, hiehéeal statistical mode, we control for age,
income, ethnicity, education, street design, conenaigtance, and proximity to fast food
restaurants, grocery stores, big box stores, coenea stores, and fitness clubs. The resultis a
novel assessment of streets networks, communiigreand public health that can better speak
to questions of health disparities and the poteimipact of the type of street network where one
resides.

LITERATURE REVIEW

Data from the Centers for Disease Control and Priteme (CDC) suggests that more than half of
the U.S. adult population fails to meet the minimdaiy amount of recommended physical
activity and that this percentage is higher thamas a generation ago (Centers for Disease
Control and Prevention, 2005, 2011). U.S. workens drive an average of 25.2 minutes each
day as compared to 21.7 per day in 1990 (Pis&8Kki6), and the amount of time spent driving
has been found to be a key factor impacting obeisiky(Jacobson et al., 2011). Today, over
68% of Americans over the age of 20 are overweaiglabese; this number has increased from
just 31.5% in 1960 (Ogden and Carroll, 2010b). hBps more critically, this issue now affects
1 in 3 children, which triples the percentage odmweight or obese children from just a
generation ago (Ogden and Carroll, 2010a). Thus,g likely to be the first generation with a
shorter expected life span than their parents &tacknd Sinclair, 2011). The good news is
that even modest increases in physical activityeh#en shown to positively impact obesity
rates, risk for certain chronic diseases, as vgethartality rates (Warburton et al., 2006; Wen et
al., 2011).

The World Health Organization (WHO) estimates thaufficient physical activity contributes
to 1.9 million annual deaths worldwide (Badland &wthofield, 2005). The literature suggests
that the shift in industrialized nations toward arensedentary lifestyle is linked to increasingly
auto-dependent lifestyles, which in turn is linkedower density developments and
auto-friendly land uses (Centers for Disease Coatrd Prevention, 2011). As physical
activity is removed from utilitarian transportatiand commute times rise, it is often difficult to
incorporate leisure-time physical activity intoiadividual's daily life (Badland and Schofield,
2005).



Over the course of the last several decades,tratlire concerning the nexus between the built
environment and public health has evolved. Thddwgion can be characterized by three
points: i) studies in this area now include a bevadnge of variables from a larger number of
disciplines; ii) these studies use more appropgtdgstical methods such as multilevel,
hierarchical models; and iii) they use more direefasures of health. We will organize this
section around the last point by conducting anwieer of the built environment literature

related to travel behavior, physical activity, abgsand finally, actual health disparities;
evidence of the first two points will be integratédoughout these sections.

Existing literature on the impact of the built emaviment on travel behavior, physical activity,
and health outcomes is vast (Dannenberg et al3;200ing and Cervero, 2010; Frumkin et al.,
2004; Jackson and Sinclair, 2011). Our literatexeew began by searching Google Scholar
and TRID databases for broader keywords (‘builimment,” ‘community design,’ or ‘street
networks’ combined with ‘travel/transportation,ttave travel/transportation,’ ‘non-motorized
travel,” as well as ‘bicycling,” ‘walking,” and ‘pJsical activity/health’). These searches yielded
hundreds of empirical studies and dozens of liteeateviews on the subject.

One challenge in this process was interpreting wRattly scholars from across the various
disciplines mean when using the somewhat general teuilt environment. While the built
environment might focus on the transportation istinacture and land uses in some disciplines,
other disciplines take it to include food sourced eecreational opportunities (Sallis and Glanz,
2006). The intent of this study is to increase unnierstanding of the specific role that the
street networks plays in health disparities; adoglgt, we elected to focus on papers, literature
reviews, and meta-analyses with findings applicédlstreet network characteristics, but with
the understanding that other related factors shioellcecognized and controlled for. In addition
to peer-reviewed, published literature, we alséewed existing policy briefs and
non-peer-reviewed literature on the subject. Rstance, recent literature reviews from the
Robert Wood Johnson Foundation as well as an iatiemel review for the Victoria Department
of Transport (Australia) reached similar conclusiatout the built environment playing a role
in physical activity, obesity, and health outcomes.

Overall, it is evident that the existing researtdsges over the role of specific street network
characteristics, particularly in terms of how swehiables were operationalized and which street
network variables were found to be significantifmignificant). The three fundamental
elements of street networks (which will be covarethore detail in the data section) are: street
network density, connectivity, and configurationgighall and Garrick, 2012). Without
sufficient attention being paid to these individalments of street network design, including
their relationship to the numerous other factorgaoting public health, trying to build a
community with health outcomes in mind remains esging game. The remainder of this
literature review investigates how those componargsonsidered in relevant health-related
built environment literature.

Street Networks and Travel Behavior

The most mature of the relevant built environmégtdture strands focuses on travel behavior.
In a meta-analysis building upon their previoustegais paper, Ewing and Cervero examined
over 50 empirical studies (Ewing and Cervero, 2@01,0). When characterizing the built
environment, they stated that most early paperseasitin “one big caveat: many differences
among neighborhoods or activity centers get lumpgala single categorical variable, with a
concomitant loss of information. These studiesenmakeffort to isolate the effects of different
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land use and design features on travel decisidisVing and Cervero, 2001). In other words,
neighborhoods were broadly categorized betweerptvibbree groupings such as “traditional”
and “suburban”, and then travel patterns were coetpacross neighborhoods. Ewing &
Cervero identified at least fourteen such studidsle Saelens et al. (2003) cited another seven
(Ewing and Cervero, 2001; Saelens et al., 2003yoady speaking, these papers gave some
sense of street network differences but little gaantifiable. The papers that do begin to put
numbers to built environment factors generally fbgignificant correlations with outcomes
such as mode share; however, Ewing and Cerverdgubout that these correlations come with
many caveats based upon research design, datalahyil appropriate methods and controls, as
well as conceptual and theoretical issues (Ewirtg@ervero, 2010).

In terms of papers that quantify street networkatizristics, the existing travel behavior
literature lacks consistency. For instance, Mdlrstmal Garrick described a series of papers
that discuss the importance of street connecthvitycompute connectivity with a measure of
street network density (Marshall and Garrick, 2012pn the other hand, many researchers used
population density to measure street network dgnsitile highly correlated in some cities,
population density and street network density atenecessarily congruent (Marshall and
Garrick, 2012). Ewing & Cervero’s meta-analyssoaincluded some specific street network
measures, such as intersection density but nairmbmation with enough other measurements
to fully characterize the full range of street netkvelements (Ewing and Cervero, 2010).
Another limitation of the papers that attempt tcaswere the built environment — especially when
compared to the earlier papers that broadly congpadifeerent neighborhoods — was the almost
complete disregard for street network configuratiokVhile the literature seemed to agree that
more compact and connected street networks cagreitgh a reduction in driving, it remains
difficult to understand the full impact of the sitenetwork due to the above issues.

Street Networks and Physical Activity

Sallis (2009) traces the history of scholarly cimttions to physical activity and built
environment research (Sallis, 2009). In termsut€omes, Sallis notes that it was not until the
mid-1990s when physical activity began replacimayét behavior in some papers, and prior to
2000, most physical activity studies focused d{rioh recreational physical activity. Since
then, this strand of research has evolved to imclutiroader range of physical activity outcomes.

With respect to measuring the street network, ridreds in the physical activity papers were
similar to the travel behavior research. Brownsdral., in their literature review of measures
of the built environment for physical activity, @sed a great deal of variability ithe
operationalization of common GIS measureg;luding street network measures (Brownson et
al., 2009). Forsyth, et al. stressed the impodarigefined and consistent methods for
measuring the street network to avoid over- or tiedémation of such characteristics on
physical activity (Forsyth et al., 2008). For arste, connectivity and density consistently
showed positive correlations with physical actiyliyt findings are often variable or conflicting
(Davison and Lawson, 2006). Such conflicts magbe to the differences in
operationalization of these variables and the pamicfor relying on proxy measures (Badland
and Schofield, 2005). Akin to the broad “tradiadinand “suburban” categories from the above
discussion of comparison studies, terms such aseminity and density also tend to lack
consistent definitions. While connectivity and gié&ngenerally refer to similar concepts, the
actual measures often aggregate or combine conldeptand-use mix and access to
destinations, which obfuscate street network dediffarences.



Street Networks and Health Outcomes

The research related to actual health outcomdsasvast but comes with far less consensus than
found in the travel behavior and physical actigtsands. Some research suggests that there are
significant correlations between the built envir@nmhand health (Davison and Lawson, 2006;
Dunton et al., 2009; Frank et al., 2001; Grafo\@)&, Saarloos et al., 2009; Williams et al.,

2012). Other researchers find no significant reteghip between built environmental variables
and, for instance, BMI or the body mass index (@&idl., 2008; Kirk et al., 2010; Sallis and

Glanz, 2006).

One issue has to do with what variables are incudé¢he researcher’s definition of the built
environment. When inclusive of the surroundingd@mvironment, it is significantly

correlated with obesity and obesity-related illess@Bader et al., 2010; Lovasi et al., 2009;
Wells and Yang, 2008). For instance, Black andiNaaised multilevel regression,

controlling for a variety of variables, to find titae availability of local food and fitness
amenities was associated with reduced obesity kBlad Macinko, 2010). They also found
income to be an important factor, which is not unown in such health studies, as the literature
more generally suggests that socioeconomic st&ES) variables significantly impact health
outcomes. Income (Lovasi et al., 2009; Pantel.g2@10), age (Cutumisu and Spence, 2009;
Kemperman and Timmermans, 2009; Li et al., 20081p&rio et al., 2010), and race (Coogan et
al., 2009; Haas and Rohlfsen, 2010) are all impoffectors that impact our understanding of the
built environment and health. The overall impddhe built environment may vary by
population and social group (Forsyth et al., 20@%asi et al., 2009); thus, it is important to
control for such SES and food environment variablesur study. This is critical when
attempting to isolate the street network and sttesign factors of interest. While such factors
have not been completely overlooked in the healthlauilt environment literature, they have

not yet been sufficiently measured and evaluateac@bnald et al., 2010).

This literature review aimed to focus specifically the impact of street network variables on
travel behavior, physical activity, and health, asdsuch, on synthesizing a subset of the
literature. Based on the inconsistent findingpeeglly regarding health outcomes, we argue
that by utilizing more concise definitions and bethvironment metrics — specifically those
metrics related to street network characteristissholars can more clearly identify significant
trends. The importance of the street network @afiming characteristics of the built
environment is understudied in comparison to o#tspiects of the built environment (Leck,
2006), and this paper aims to fill that gap.



STtubDY BACKGROUND

The goal of this paper is to explore the compléati@enships between street network design and
key indicators of health including obesity, dialseteigh blood pressure, heart disease, and
asthma. The study was based on an extensivednwitonment dataset originally collected for
a road safety project of California cities with pégtions ranging from 30,000 residents to just
over 100,000 (Marshall and Garrick, 2009, 20104120 2012; Marshall and Garrick, 2010b,
2011b). The following cities were selected froseaof over 150 California cities to best
represent a geographically diverse collection @&ive of the safest medium-sized cities and

twelve of the least safe based upon the road tiatalie:

Safer Cities
Alameda
Berkeley
Chico
Cupertino
Danville
Davis
La Habra
Palo Alto
San Luis Obispo
San Mateo
Santa Barbara
Santa Cruz

Less Safe Cities

Antioch
Apple Valley
Carlsbad
Madera
Morgan Hill
Perris
Redding
Rialto
Temecula
Turlock
Victorville
West Sacramento

The cities are all from California because we ordly wanted to ensure consistency in the

safety data, which is collected differently by eatite.

This reasoning is equally essential for

the health data. Street network measures — inajutlieasures of street network density, street
connectivity, and street patterns — were combinigd street design characteristics, the
California Health Interview Survey (CHIS), as wad travel behavior data and socioeconomic
data from the Census and American Community Survais information was geo-coded in a
GIS database in order to conduct a comprehensategbspnalysis.

DATA
Health Outcomes Data

Cross-sectional health data was collected fronCiddornia Health Interview Survey (CHIS)
for the years 2003, 2005, 2007, and 2009. Wi itmnge in sample size from 42,000 to 51,000
adults, CHIS is one of the most extensive healgetdelephone survey in the country of
civilian households selected through random digilimy (UCLA Center for Health Policy
Research, 2009). The sample for this analysisrestscted to adults, 18 years and older due to
data restrictions. For the CHIS adult samplenherview response rate was 60%, which is
comparable to telephone surveys carried out byNdtenal Center for Health Statistics. The
health outcomes (obesity, diabetes, high bloodspres heart disease, and asthma) represent the
fraction of respondents self-reporting that pattcdisease (obesity was determined as

BMI 30.0 via self-reported height and weights).

To protect individual privacy, individual persorvés data were aggregated to the census tract
level by CHIS personnel. In investigating the aaddility of this level of geography for our
study, we identified many instances where the cetraiet boundary extended beyond developed
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edges and well into uninhabited and low densitasre In other words, population density is
not homogenous across many census tracts (Meri8).2 Figure 2a depicts an example of
this problem for a census tract from Antioch, CAere the development intensities across the
census tract are quite diverse. With a populatic§ 489, the calculation of population density
would be quite different depending upon the aresl dsr the denominator; if using the entire
census tract, the population density is 1,750 m#eg! mi. but would be more than triple that if
we focus on the corresponding highly developedibgroup shown in the top-left of Figure 2b.

This issue of heterogeneous population distribstismot uncommon with health-related data,
and unfortunately, such aggregated data can masisrand the spatial variation of health
disparities (IEHIAS, 2013). A frequent solutiontisemploy spatial disaggregation techniques
such as simple area weighting, mask area weightingtochastic allocation (Gallego, 2010;
IEHIAS, 2013). More advanced spatial disaggregatizhniques typically differ from the
simpler methods in that they incorporate suppleargrdata to enable the disaggregation. For
instance with population-based disaggregationsl lese data is particularly useful (Gallego,
2010; Gallego et al., 2011; Mennis, 2003; Sleeter@ould, 2008). One such technique is
dasymetric mapping. Dasymetric mapping techniquiggnated more than 150 years ago, but
with the advent of GIS has become the subjectr#wed interest and study over the last few
decades (Eicher and Brewer, 2001). The fundam@galbehind dasymetric mapping is to
depict the underlying data of zonal boundaries ¢emsus tract) by dividing them into internally
homogenous zones (Eicher and Brewer, 2001). Dasygnmeapping is often used with
population-based data, to the point where the Geflogical Survey (USGS) and the European
Environment Agency publish dasymetric populationsity grids for researchers (Gallego,
2010; Sleeter and Gould, 2008).

For the purposes of our effort, we employed the 8$G&thodology in GIS. This approach is
specifically intended for reassigning census tlae#! population data to another set of
overlapping zones and employs the National Lande€batabase as the ancillary dataset
(Sleeter and Gould, 2008). The basic steps indueelassifying the land use and land cover
(LULC) codes (shown in Figure 2c) into one of f@apulation-based categories, which are
depicted for our Antioch example in Figure 2d. Wen broke the census tracts down into
relatively homogenous zones using the USGS-puldi§hi& script, based upon published areal
weighting and empirical sampling techniques (Men2@93; Sleeter and Gould, 2008). This
step results in a raster grid highlighting areah Wwomogenous population densities, which is
illustrated in Figure 2e. Area ratios combinednwitie original health outcome data allow us to
calculate the number of people within each zonlcedtl with each disease. We then intersect
these zones with the block group layer and agaeraosa ratios to calculate the adjusted health
rates. Table 1 compares the original data to #sgmetric adjusted data; the
population-weighted overall disease rates remamilai. Spatially, the result is a set of health
outcomes that will minimize the masking of healispadrities during the analysis phase.

% &
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Street Network Data

While many of the papers covered in the literatesgew point to both increased network
density and connectivity as desirable, few succdgdifferentiate between these two network
gualities with quantifiable measures. In some papeetwork density and connectivity
measures were mistakenly used interchangeablyinandst papers, network configuration was
ignored altogether (Marshall and Garrick, 2012)0 irfsorder to best characterize street
networks, we created a straightforward set of nressior the three essential street network
characteristics of interest:

I.  Street connectivity
ii.  Street network density
iii.  Street configuration

While there are abundant indices, ranging from w&mple to overly complex, available to
measure both connectivity and network density,vetsp statistical analysis helped identify
variables resulting in the strongest models: igetion density for street network density; and
the link-to-node ratio for street connectivity. tdrsection density tallies the total number of
nodes or intersections, including dead ends, avides it by the area. Higher values signify
higher network densities. The link-to-node ratiades the total number of links (i.e. road
segments between intersections) by the total nuwi@rdes (i.e. intersections) (Ewing, 1996;
Handy et al., 2003; Litman, 2005). Using the 20i®2th American Detailed Streets GIS layer
from ESRF, we calculated both intersection density and itiletio-node ratio for the typical
street network as well as for the same networkrmhtiding pedestrian-only connections and
alleys as wefl  Alleys are also included in the intersectionsignmeasure used by LEED-ND
(Council, 2009). This latter set of network deysihd connectivity measures — with alleys and
pedestrian-only connections included — proved gieoim the health statistical models.

Neither intersection density nor the link-to-nodéa imparts any sense of configuration. To
resolve this, we adapted a chart from Stephen Mé#islhook Streets and Patterrtbat
emphasizes the major street network structure atsghafrom the minor street network, depicted
in Figure 3 (Marshall, 2005). To facilitate relimn, major streets were classified as those
falling between A20 and A39 under the Feature Camde (FCC) classification schema used by
the Census. The A20 series includes all primaagisahat are not limited access roads, while
the A30 series includes all secondary or connecbtagds; in other words, the major streets are
essentially the arterial and collector roads. Usi@ading the role of the major streets in the
network helped facilitate the manual classificatidreach of the over 1,000 block groups into
one of the eight representative configuration type&lthough Marshall’s categories do not
accommodate every possible pattern, they do pravsteaightforward visual classification that
can help differentiate between the most commonigordtion types. Actual city patterns are
often more complex than the representative conditiums; so while actual street networks were
not always exact replicas of the representativgrdias, there were only a handful of the over
1,000 block groups that were not able to be contigeclassified. Table 2 displays the
descriptive data for the analysis.

Street Data
We collected the following street design charast&s for every major street segment (based on
the street categorization methodology above) uSiaggle Earth and Google Street View:

Total number of lanes

!Please note that the 2000 Census TIGER files weed to calculate street network measures in owrmireet network 11
papers.

%please note that street network density and coivigcineasures in our prior papers did not inclutten-automobile streets
or alleys; as a result, the values reported in thégper are typically higher than those reportegbmevious papers.



Outside shoulder width

Raised median (0 = no, 1 = yes)

Painted median (0 = no, 1 = yes)

On-street parking (0 = no, 1 = yes, 0.5 = alongside of street)
Bike lanes (0 = no, 1 = yes, 0.5 = along one siddreet)
Sidewalks (0 = no, 1 = yes, 0.5 = along one sid&reket)

This data was field verified in six cities via argale of major streets. For use in the statistical
model, we aggregated the data to the block grousd.le

Figure 3 - Street Configuration Classifications, Adapted from S. Marshal[65]

Land Use Data

As discussed in the literature review, it is impeeafor built environment/health studies to
account for the food environment. Hence, we pwetldand use data from InfoUSA. This
data included addresses for every restaurant, grgbere, big box store, and fitness club in the
24 cities. We geocoded these land uses into GdSimaggregated the restaurants into two
categories: one for fast food restaurants and enalifother restaurants. Each land use
category (i.e. fast food restaurants, other reatday grocery stores, fithess clubs, and big box
stores) was aggregated and counted at both thk dtoap and city levels of geography. We
de ne a big box store as a retail use with a sirmylgding occupying 40,000 square feet or more.
Big box stores typically serve large market arpassess very large parking lots, and can
sometimes diminish the pedestrian environment, lwbauld negatively impact active
transportation and health outcomes.

As part of this work, a number of land use andtl®niironment variables were calculated and
investigated but were unable to be used in the firaels due to high correlation with other
tested variables. The variables in the final mpdetre selected to maximize model
significance. Some of these variables includeupetdon, population density, employment
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density, mode share data, centerline length oétneer unit area, and block size.

Socioeconomic Status (SES) Data

SES data collected from the U.S. Census and Ame@iganmunity Survey included income,

age, ethnicity, and level of education. Incomatithe household level in continuous categories
of $10,000s. The age categories for those 18 ywarkler were weighted and averaged by the
mid-point of each categorization level. Ethniaggtegories were aggregated to create a
variable representing the total non-white percemtag-or level of education, we aggregated the
data into an education index score. Scores rafigedzero to four in terms of the highest

level of education received, with: less than a eghool diploma = 0; high school degree = 1;
bachelor’'s degree = 2; master’s or professionataieg 3; doctorate = 4. Thus, a score of 2.0
indicates that the average adult level of educdbothe specified area is a bachelor’s degree.
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Table 2 - Descriptive Statistics (selected varialdg¢ and Multi-Level Model Hierarchy
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METHODS

We summarized the approach to assessing stregterketand the built environment in the data
section; additional details can be found in ouvyes papers (Marshall and Garrick, 2009,
2010a, 2011a, 2012; Marshall and Garrick, 201001BR  This section describes the statistical
methodology.

The fundamental research question for this papenether street network characteristics and
street design features are associated with heaplamties — is tested using a multilevel
hierarchical random effect statistical model, whister the last fifteen years has become
accepted practice for researchers conducting $pa&iddth studies (Burton et al., 2009; Healy,
2001; Li et al., 2005; Radenbush and Bruk, 200dRuet al., 2007; Subramanian et al., 2003).
Our data is considered multilevel since it consi$tisealth and built environment records on the
first level that can be clustered into a seconélle¥ geography, in this case at the city level.
The concept behind a multilevel hierarchical maddinking a pair of statistical models in order
to simultaneously allow a focus on both micro-leaetl macro-level relationships as well as the
interaction between the two (Healy, 2001). Thsetpf structure helps account for spatial
autocorrelation and the fact that respondentsarséime areas share the characteristics of those
areas, which would violate the independence assampf an ordinary least squares (OLS)
regression (Ewing et al., 2003). If we did noteakis into account, the standard errors of
regression coefficients that we are seeking toaatsowith our community design and street
network characteristics would be underestimatedrigwt al., 2003).

The following represents the hierarchical structure
Level 1: Between-Block Group Disparities
Level 2: Between-City Differences

The first level of the model includes the healtlicomes, SES data, and built environment
characteristics of each block group, which can beeted as a function of the characteristics of
the block groups plus stochastic random error (§weinal., 2003). This equates to each city
having a specific regression equation portrayirggassociation between the characteristics and
health outcomes of the block group. For the sedevel, the intercept and coefficients are
modeled in terms of city characteristics plus randworor (Ewing et al., 2003).

The level 1 model tested health outcomes as aitmof the city mean using the following
form:
Yi= ot X+ i ~N(O, %)

where Y is the outcome for block group i in city j, angig a fixed covariate. o represents
the mean level of the outcome in city j, andrepresents the effect of the block group-level
variable on the outcome in city j.

The expected random effects level 2 model allowesritercept and slope to vary across cities.
The level 2 model corresponding to a level 1 randoefficients model is as follows:

0 0 Yo Uoj 0 00 01

~ N ,

1j 10 ulj ulj 0 01 11

where oo represents the overall average outcome leve};(at®, and 1o is the average effect of
block group variables on the outcomes. Also, thelevel community data and street network
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information were added as fixed effects in this elod order to permit for the potential varying
and cross influence of block group level and aiyell built environment characteristics. For
instance, one could imagine that living in a contexci connected block group might make
more of a difference in a city of similar struct@®compared to a city characterized by a sparse,
disconnected street network; this modeling strectacilitates the testing of such questions
related to the differing public health impact ofgidorhood walkability as compared to

citywide walkability. The statistical analyses we&ompleted with SAS 9.3 using the PROC
MIXED procedure command. The variables used irfitted models were selected in an effort
to maximize model significance using the AIC valué&tatistical significance at three levels (i.e.
p<.10, p<.05; and p<.01) is noted by the asteiisHs@able 3. This methodology is common to
other studies attempting to concurrently display/rgsults of multiple statistical models
(Chatman, 2013). With respect to multicollinearitgne of the variables used in the final
models had a Pearson correlation coefficient higjeem 0.5.

RESULTS
Table 3 portrays the statistical results of the fowltilevel health models, as we did not find
statistical significance with the asthma model. e Tiealth outcome for:

Model 1 is obesity;

Model 2 is diabetes;

Model 3 is high blood pressure (HBP); and
Model 4 is heart disease.

The variables tested will be discussed via thefalhg categories: street network characteristics,
street design features, land use and the foodammient, and SES variables. The interaction
between street network and SES factors has shosonetimes be correlated with health
(Boone-Heinonen et al., 2011). While parsing diose interactions is challenging due to the
number of confounding relationships, we testedath relevant interactions terms (between
every combination of street network and SES vaes)shnd found no significant interactions.
Also, the hierarchical terms (corresponding towBgability in slopes) are significant in every
model; this means that we cannot reject the nydbkiyesis that there is no difference in slopes
across cities for the associated health outcomes.

Street Network Characteristics
The street network variables represent the thregdimental characteristics of a street network:
i) street network density; ii) street connectivigyid iii) configuration.

Increased intersection density, a measure of stetetork density, is significantly correlated
with: a reduction in obesity at the block groupdkwand a reduction in all four disease rates at
the city level (which corresponds to the intersattilensity for the entire city).

Rather than report elasticity measures, Table 4Tade 5 calculate the percent change in the
expected disease rate based upon changing theofexaingle variable and holding all other
variables at their mean. This percent changededapon the expected disease rate with
respect to a reference value close to the meam wdlthat variable and is mathematically the
same as elasticity measures, but easier to visu@ialand and Quddus, 2004). These results
focus solely on the influence of intersection dgnaihile holding all other variables constant at
their mean value. Regarding street network denfityexample, the results suggest that
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reducing intersection density at the block growygldérom 144 intersections per square mile
(equivalent to a 12-by-12 grid) to 81 (equivalemat9-by-9 grid) is associated with, on average,
a 2.8% increase in obesity. The same drop ingatgion density across the entire city (as
opposed to the block group level) corresponds thighfollowing: a 33.4% increase in obesity, a
42.4% increase in diabetes, a 12.9% increase in, ldBtPa 19.7% increase in heart disease.
These results suggest that citywide intersectiorsitieis more important to health outcomes
than at the block group level; in other words, dxelitealth outcomes are more strongly associated
with living in a compact city than a compact neighiood surrounded by a sparse city. This is
an important result in that many new developmemtsi$ on building urban enclaves with high
intersection densities in the middle of more subarbnvironments. Such developments have
many benefits but may not be optimal for publicltireahere our results suggest that the overall
character of the city makes a bigger difference.

Findings regarding street connectivity demonstsatelar trends to street network density with
an increased link-to-node ratio at the block grmyel being significantly associated with lower
rates of obesity and heart disease. The link-tterratio was not found to be significant in any
models at the city level. Comparing a block grauih a high level of street connectivity to

that of an average level (link-to-node ratio of22v&. 1.75), we would expect an 8.6% lower rate
of obesity and a 6.7% lower rate of heart disea3énus, more compact and connected street
networks are significantly associated with improwealth outcomes.

The categorical variable representing street condigon was only significant in the obesity and
HBP models; specifically, we found only two streetwork patterns to exhibit significant
differences from the network reference type, ‘Tifé€-like major streets and tree-like minor
streets). These two network patterns were ‘GQd¢pd major streets and gridded minor
streets) and ‘RG’ (radial major streets and gridoaor streets). Holding all other variables at
their mean value (including both intersection dgnand the link-to-node ratio), we would
expect a 1.0% increase in obesity for a ‘GG’ neknand 47.6% increase for an ‘RG’ network at
the block group level. It is worth noting that @6t of the 1,044 block groups were designated
as an ‘RG’ pattern type, as the gridded networknfaur cities tended to be more orthogonal.
For HBP, both the ‘GG’ and ‘RG’ networks were asated with almost a 10.5% drop, as
compared to the ‘TT’ reference type.

We also accounted for the differences in how tves®us network configurations tend to be

built in practice by holding all variables at theirerall mean other than street network density,
connectivity, and configuration. For intersectiensity and the link-to-node ratio, we used the
mean value of each particular configuration andébthat: the ‘GG’ network is associated with
improved obesity, HBP, and heart disease; andRI& hetwork is associated with increased
obesity but lower rates of HBP and heart disea3éese expected rates are shown at the bottom
of Table 4.

Whether or not the streets were curvilinear wassigptificant in any model.

Street Design Features

Most of the street design features were not sicguifi in the health models; however, the average
number of lanes on the major streets was significeNlodels 1, 2, and 4. Wider major streets
with more driving lanes were indicative of incrediebesity and diabetes rates. This result seems
sensible when considering that wider major streggy be indicative of an inferior pedestrian
environment. However, the presence of additicauaé$ on the major streets was also
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associated with reduced heart disease. This ragpéiars counter-intuitive but could suggest
differences in access to health care and diagnasesudies suggest the rate of undiagnosed
heart disease is much higher than the rate of gndeed diabetes (Lloyd-Jones et al., 2010).

At the block group level, averaging six lanes iagtef two on the major streets suggested a
28.9% increase in obesity but a similar sized deswen heart disease (Table 4). This same
change to the major roads at the city level wasaated with a 366.6% increase in diabetes.
In the same diabetes model (Model 2), we foundtti@presence of bike lanes on the major
roads was associated with lower rates. Raisingéneentage of bike lanes on major roads
from 0% to 40% was associated with a 47.6% decrieabe diabetes rate.

Land Use and the Food Environment

In terms of the food environment, more fast focgtaarants were associated with a lower HBP
rate at the block group level and a higher diabettsat the city level. The presence of a
single big box store at the block group level wesoaiated with a 13.7% rise in obesity rates and
a 24.9% increase in the diabetes rate, as showalite 5. In terms of other food environment
variables: the presence of a grocery store atlteklgroup level was associated with a slight
decrease in HBP; and more convenience stores aitjhlevel were associated with an increase
in both the obesity and diabetes rates. Just tlddianal convenience stores in a city over the
average number were associated with a 16.9% irereasbesity and a 29.1% rise in diabetes.
The other measured land use element, fithess aldsssignificant in the obesity model at the
city level. A city with a relatively high numbef fithess clubs (20) correlated with a 24.5%
drop in obesity rates as compared to a city witlaarage number (12).

Socioeconomic Status

At least one SES variable was significant in eddhe five health models. Since household
income and education score were highly correlaiaty, the variable that resulted in a better AIC
was used in the final model. We also tested &s@f interaction terms to determine whether
certain SES groups were more or less impactedrbgtstetwork and street design factors but
found no significant results.

With respect to income, higher income was assatiaith lower rates of obesity and lower rates
of HBP. More specifically, results suggest an aveéh poverty level household incomes
(~$20,000) as compared to an area of approximatelsage income for the sample cities
(~$60,000) is associated with an 8.4% higher obeattyand a 6.4% higher HBP rate (Table 5).
Age was significant in Models 3 and 4, where a hieaghood with an older population was
correlated with increased HBP and heart diseass.ratThe percent of non-white residents was
significant in the diabetes model where an incréaslee percentage of minorities was
associated with an increase in diabetes. Averagerute time was only significant in the
obesity model but with a contrary effect to whas baen seen in several notable studies (Frank
et al., 2004; Hoehner et al., 2012; Lindstrom, 20@8bley et al., 2006; Pendola and Gen, 2007,
Wen et al., 2006). Our results suggest that adongmmute is significantly associated with a
lower obesity rate. Given that many of the citregestigated for this study are very
well-known for their active transportation and higansit mode shares, the finding that a five
minute longer commute is associated with a 3.6%e@dae in obesity seems plausible. For
instance in cities such as Davis — which boast$itpeest bicycling to work mode share in the
country — a longer commute, if walking or bikingigit very well be associated with improved
health outcomes.

18



To further investigate this hypothesis, we compa@umute times to mode share statistics but
did not find commute time to be highly correlateihvany particular mode share. The only
evidence of high correlation between commute timgraode share surfaced when we focused
our analysis on the eight cities with bicycle comenmodes share greater than 2.5% (i.e.
Alameda, Berkeley, Chico, Davis, Santa Barbaraté&5@nuz, and San Luis Obispo). While
bicycling and walking mode shares were still ngihy correlated with commute time for this
subset of cities, we found a Pearson correlati@&fficeent of 0.66 between transit mode share
and the number of minutes commuting. High transége has been shown in other studies to
be associated with increased physical activity $Beand Dannenberg, 2005; Wener and Evans,
2007) and reduced BMI (MacDonald et al., 2010).migir trends could be playing a role in our
findings, which warrants future study with indivalized health and travel behavior data so that
all modes of transportation can be examined intgretetail to better explain these relationships.
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Table 3 - Results of Multilevel Hierarchical Models
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Table 4 - Expected Change in Health Outcomes for &tet Network and Street Design
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Table 5 - Expected Change in Health Outcomes for lred Use and SES Variables
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CONCLUSIONS

In the existing health and built environment litera, the characterization of street networks
lacked consistent measures and classification mgsterhich has left our understanding of the
relationship between street network design andihealtcomes muddled. Accordingly, this
research builds upon our prior work establishingrapriate measures of street network design
elements so that we can better understand theiimglromoting healthy communities. One of
the challenges in connecting the built environnterttealth disparities is accounting for the vast
number of other factors clouding these relationshipAs a result, we also considered street
design while controlling for land use, the food eomment, and a range of socioeconomic status
variables. In a series of multilevel hierarchiGdom effect statistical models, we found the
more compact street networks correlated with rediuates of obesity, diabetes, high blood
pressure, and heart disease. Some critics poinbaustudies regarding health and community
design fail to consider the potential for increasgdosure to air pollution by those not in their
cars. However, our study also explicitly considetiee same set of independent variables with
asthma rates as the dependent variable and foustatistically significant results.

Our categorical classification of street patteraswnly significant in the obesity and HBP
models and suggested that for the two most prevaterfigurations, a full tree-like network and
a fully gridded network, the latter was associatéth a slightly higher obesity rate. When also
accounting for the manner in which these two nekvigpes tend to be built in practice, we find
improved rates for obesity, HBP, and heart diséaisthe ‘GG’ network as opposed to the ‘TT’
configuration.

It might not be common for people to explicitly ¢emplate health when selecting a place to

live, but this research indicates it is worth cdesing. While it is likely possible to lead a
healthy lifestyle is most any type of neighborhoodr, findings suggest that people living in

more compact cities tend to have better healthomués. Whether these effects are caused by a
healthier subset of the population self-selectinig certain types of places is unclear. Our
previous research showed dramatic increase itauten active transportation in compact and
connected networks with smaller streets; on therdtnd, neighborhoods without such
characteristics have the potential to inhibit actransportation, even for someone with a
penchant for it (Marshall and Garrick, 2010a). [sdisparities in the ability to partake in
utilitarian and/or recreational transportation nigya contributing factor to health disparities.

Despite the extensive literature cited, thereilsrstich work to be done to solidify our
understanding of the link between the built envin@mt and health outcomes. In future
research, we hope to overcome the limitations ofcowrent study, specifically addressing the
fact that our health outcomes were aggregated elfideported. Also, given the
cross-sectional nature of our study, showing causat also not feasible. Thus, a longitudinal
study would potentially enable us to speak upogestnetworks issues as a health intervention.
Finally, it would be worth further investigatingddth outcomes with respect to commute times
and how that relationship might with respect to motdoice. Such a study would be again be
helped by individualized health and travel behadaita.

Nevertheless, our results suggest that the ralleeo$treet network and how we put together the
bones of our communities should not be overloolsed potential contributing factor to health
outcomes. We hope that by refining the measurearahtlassification of street network
characteristics, future researchers will be abl@doe accurately parse-out relative impacts of
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the built environment on health with greater clarit Such refinements, along with increased
access to high quality, objective measures of iddal health and activity, as well as the built
environment, can provide evidence-based recommiengdor planners and policy-makers
attempting to build communities that help improealth.
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