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COMMUNITY DESIGN, STREET NETWORKS , AND PUBLIC HEALTH  
 

ABSTRACT 
What is the influence of street network design on public health?  While the literature linking the 
built environment to health outcomes is vast, it glosses over the role that specific street network 
characteristics play.  The three fundamental elements of street networks are: street network 
density, connectivity, and configuration.  Without sufficient attention being paid to these 
individual elements of street network design, building a community for health remains a 
guessing game.  Our previous study found more compact and connected street networks highly 
correlated with increased walking, biking, and transit usage; while these trends suggest a health 
benefit, this study seeks to strengthen that connection.   

Using a multilevel, hierarchical statistical model, this research seeks to fill this gap in the 
literature through a more robust accounting of street network design. Specifically, we ask the 
following: what is the influence of the three fundamental measures of street networks on obesity, 
diabetes, high blood pressure, heart disease, and asthma?  We seek to answer this question by 
examining 24 California cities exhibiting a range a street network typologies using health data 
from the California Health Interview Survey.   

We control for the food environment, land uses, commuting time, socioeconomic status, and 
street design.  The results suggest that more compact and connected street networks with fewer 
lanes on the major roads are correlated with reduced rates of obesity, diabetes, high blood 
pressure, and heart disease among residents.  The outcome is a novel assessment of streets 
networks and public health that has not yet been seen but will be of great benefit to planners and 
policy-makers.   

 
KEYWORDS 
Street networks, physical activity, built environment, public health 
  



3 
�

INTRODUCTION  
Inquiries into the built environment’s impact on public health in the United States evolved 
appreciably over the last 150 years.  In the early days of the U.S. Sanitary Commission, the 
focus was on just what the name implies: ensuring sanitary conditions in cities (Tise, 2013). 
Deaths from diseases such as cholera, tuberculosis, malaria, and typhoid fever were not formally 
linked to built environment issues such as poor sanitation and close proximities until the 1840s 
when a German doctor named Rudolf Virchow looked beyond medicinal answers and instead 
recommended solving these problems with changes to the built environment (Corburn, 2013).  
Frederick Law Olmstead, founding director of the U.S. Sanitary Commission, also understood 
this link between health and the built environment and brought similar lessons to military camps 
during the Civil War (Fisher, 2010).  With the spread of manufacturing during the first and 
second industrial revolutions, the health/built environment discussion shifted toward industrial 
pollution (Rosen, 2003).  Today, obesity and obesity-related diseases represent the bulk of the 
literature focusing on the connection between health and the build environment.  Instead of 
being preceded by something as direct as industrial pollution, the obesity epidemic was instead 
preceded by a drastic shift in the way we lay out our communities.   

Prior to the twentieth century, compact and connected street networks were long held as the 
standard upon which to build a city. Dating as far back as the earliest known existence of a 
gridded street network pattern in the city of Mehenjo-Daro, New Delhi, from at least 2,500 B.C. 
(Stanislawski, 1946).  This thinking extended into the gridiron plans of the ancient Greeks and 
Romans to the organic, medieval patterns found across Europe and eventually in the New World.  
The Renaissance helped bring orthogonal, rectilinear networks back into vogue, and these street 
network patterns eventually found their way into early U.S. cities such as New Haven and 
Philadelphia in the mid-1600s.  The trend continued across the U.S. and eventually expanded to 
suburban areas, particularly during the late 1800s in conjunction with the burgeoning use of 
streetcars.  Despite some variation through the years, this approach to assembling cities saw a 
complete overhaul over the course of the 20th century.  The compact and connected ways that 
we built our cities for the last few thousand years quickly evolved into much sparser, dendritic 
street networks, as depicted in Figure 1 (Southworth and Ben-Joseph, 1997).  The existing 
literature suggests that our older cities can help facilitate less driving and more active 
transportation (Frank et al., 2007; Handy et al., 2002; Marshall and Garrick, 2010a; Pendola and 
Gen, 2007).  But do they actually have a measurable public health benefit as well?  Some 
researchers answer yes to this question (Davison and Lawson, 2006; Dunton et al., 2009; Frank 
et al., 2001; Grafova, 2008; Williams et al., 2012); other researchers find no significant 
relationship between built environmental variables and public health outcomes (Eid et al., 2008; 
Kirk et al., 2010; Sallis and Glanz, 2006).  One potential reason for these discrepancies is that 
while most studies include a measure or two of street network design, no study of obesity or 
public health has accounted for the complete range of street network elements.  

This research seeks to fill this gap in the literature by fully accounting for street network design 
so that we can better understand the role that street networks play in public health. Specifically, 
we ask the following: what is the influence of the three fundamental measures of a street network 
– street network density, connectivity, and configuration – on obesity, diabetes, high blood 
pressure, heart disease, and asthma?  The study seeks to answer this question by examining 24 
medium-sized California cities exhibiting a range a street network typologies via obesity and 
health data from the California Health Interview Survey (CHIS).  In a previous study, we found  
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more compact and connected street networks to be highly correlated with increased walking, 
biking, and transit usage (Marshall and Garrick, 2010a).  While these trends suggest a public 
health benefit, this study seeks to better understand this link to actual health outcomes and health 
disparities.  Health disparities are the differences in health by gender, race or ethnicity, 
education, income, sexuality, or geographic location that are “not only unnecessary and 
avoidable but, in addition, are considered unfair and unjust” (Braveman, 2006; U.S. DHHS, 
2010; Whitehead, 1992).  Using a multilevel, hierarchical statistical mode, we control for age, 
income, ethnicity, education, street design, commute distance, and proximity to fast food 
restaurants, grocery stores, big box stores, convenience stores, and fitness clubs.  The result is a 
novel assessment of streets networks, community design, and public health that can better speak 
to questions of health disparities and the potential impact of the type of street network where one 
resides.   

L ITERATURE REVIEW  
Data from the Centers for Disease Control and Prevention (CDC) suggests that more than half of 
the U.S. adult population fails to meet the minimum daily amount of recommended physical 
activity and that this percentage is higher than it was a generation ago (Centers for Disease 
Control and Prevention, 2005, 2011).  U.S. workers now drive an average of 25.2 minutes each 
day as compared to 21.7 per day in 1990 (Pisarski, 2006), and the amount of time spent driving 
has been found to be a key factor impacting obesity risk (Jacobson et al., 2011).  Today, over 
68% of Americans over the age of 20 are overweight or obese; this number has increased from 
just 31.5% in 1960 (Ogden and Carroll, 2010b).  Perhaps more critically, this issue now affects 
1 in 3 children, which triples the percentage of overweight or obese children from just a 
generation ago (Ogden and Carroll, 2010a).  Thus, this is likely to be the first generation with a 
shorter expected life span than their parents (Jackson and Sinclair, 2011).  The good news is 
that even modest increases in physical activity have been shown to positively impact obesity 
rates, risk for certain chronic diseases, as well as mortality rates (Warburton et al., 2006; Wen et 
al., 2011).   

The World Health Organization (WHO) estimates that insufficient physical activity contributes 
to 1.9 million annual deaths worldwide (Badland and Schofield, 2005).  The literature suggests 
that the shift in industrialized nations toward a more sedentary lifestyle is linked to increasingly 
auto-dependent lifestyles, which in turn is linked to lower density developments and 
auto-friendly land uses (Centers for Disease Control and Prevention, 2011).  As physical 
activity is removed from utilitarian transportation and commute times rise, it is often difficult to 
incorporate leisure-time physical activity into an individual’s daily life (Badland and Schofield, 
2005).   
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Over the course of the last several decades, the literature concerning the nexus between the built 
environment and public health has evolved.  This evolution can be characterized by three 
points: i) studies in this area now include a broader range of variables from a larger number of 
disciplines; ii) these studies use more appropriate statistical methods such as multilevel, 
hierarchical models; and iii) they use more direct measures of health.  We will organize this 
section around the last point by conducting an overview of the built environment literature 
related to travel behavior, physical activity, obesity, and finally, actual health disparities; 
evidence of the first two points will be integrated throughout these sections.  

Existing literature on the impact of the built environment on travel behavior, physical activity, 
and health outcomes is vast (Dannenberg et al., 2003; Ewing and Cervero, 2010; Frumkin et al., 
2004; Jackson and Sinclair, 2011).  Our literature review began by searching Google Scholar 
and TRID databases for broader keywords (‘built environment,’ ‘community design,’ or ‘street 
networks’ combined with ‘travel/transportation,’ ‘active travel/transportation,’ ‘non-motorized 
travel,’ as well as ‘bicycling,’ ‘walking,’ and ‘physical activity/health’).  These searches yielded 
hundreds of empirical studies and dozens of literature reviews on the subject.   

One challenge in this process was interpreting what exactly scholars from across the various 
disciplines mean when using the somewhat general term: built environment.  While the built 
environment might focus on the transportation infrastructure and land uses in some disciplines, 
other disciplines take it to include food sources and recreational opportunities (Sallis and Glanz, 
2006).  The intent of this study is to increase our understanding of the specific role that the 
street networks plays in health disparities; accordingly, we elected to focus on papers, literature 
reviews, and meta-analyses with findings applicable to street network characteristics, but with 
the understanding that other related factors should be recognized and controlled for.  In addition 
to peer-reviewed, published literature, we also reviewed existing policy briefs and 
non-peer-reviewed literature on the subject.  For instance, recent literature reviews from the 
Robert Wood Johnson Foundation as well as an international review for the Victoria Department 
of Transport (Australia) reached similar conclusions about the built environment playing a role 
in physical activity, obesity, and health outcomes.   

Overall, it is evident that the existing research glosses over the role of specific street network 
characteristics, particularly in terms of how such variables were operationalized and which street 
network variables were found to be significant (or insignificant).  The three fundamental 
elements of street networks (which will be covered in more detail in the data section) are: street 
network density, connectivity, and configuration (Marshall and Garrick, 2012).  Without 
sufficient attention being paid to these individual elements of street network design, including 
their relationship to the numerous other factors impacting public health, trying to build a 
community with health outcomes in mind remains a guessing game.  The remainder of this 
literature review investigates how those components are considered in relevant health-related 
built environment literature.   

Street Networks and Travel Behavior 
The most mature of the relevant built environment literature strands focuses on travel behavior.  
In a meta-analysis building upon their previous synthesis paper, Ewing and Cervero examined 
over 50 empirical studies (Ewing and Cervero, 2001, 2010).  When characterizing the built 
environment, they stated that most early papers come with “one big caveat: many differences 
among neighborhoods or activity centers get lumped into a single categorical variable, with a 
concomitant loss of information.  These studies make no effort to isolate the effects of different 
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land use and design features on travel decisions” (Ewing and Cervero, 2001).  In other words, 
neighborhoods were broadly categorized between two or three groupings such as “traditional” 
and “suburban”, and then travel patterns were compared across neighborhoods.  Ewing & 
Cervero identified at least fourteen such studies, while Saelens et al. (2003) cited another seven 
(Ewing and Cervero, 2001; Saelens et al., 2003).  Broadly speaking, these papers gave some 
sense of street network differences but little was quantifiable.  The papers that do begin to put 
numbers to built environment factors generally found significant correlations with outcomes 
such as mode share; however, Ewing and Cervero pointed out that these correlations come with 
many caveats based upon research design, data availability, appropriate methods and controls, as 
well as conceptual and theoretical issues (Ewing and Cervero, 2010).   

In terms of papers that quantify street network characteristics, the existing travel behavior 
literature lacks consistency.  For instance, Marshall and Garrick described a series of papers 
that discuss the importance of street connectivity but compute connectivity with a measure of 
street network density (Marshall and Garrick, 2012).  On the other hand, many researchers used 
population density to measure street network density; while highly correlated in some cities, 
population density and street network density are not necessarily congruent (Marshall and 
Garrick, 2012).  Ewing & Cervero’s meta-analysis also included some specific street network 
measures, such as intersection density but not in combination with enough other measurements 
to fully characterize the full range of street network elements (Ewing and Cervero, 2010).  
Another limitation of the papers that attempt to measure the built environment – especially when 
compared to the earlier papers that broadly compared different neighborhoods – was the almost 
complete disregard for street network configuration.  While the literature seemed to agree that 
more compact and connected street networks correlate with a reduction in driving, it remains 
difficult to understand the full impact of the street network due to the above issues. 

Street Networks and Physical Activity 
Sallis (2009) traces the history of scholarly contributions to physical activity and built 
environment research (Sallis, 2009).  In terms of outcomes, Sallis notes that it was not until the 
mid-1990s when physical activity began replacing travel behavior in some papers, and prior to 
2000, most physical activity studies focused strictly on recreational physical activity.  Since 
then, this strand of research has evolved to include a broader range of physical activity outcomes.      

With respect to measuring the street network, the trends in the physical activity papers were 
similar to the travel behavior research.  Brownson, et al., in their literature review of measures 
of the built environment for physical activity, observed a great deal of variability in “the 
operationalization of common GIS measures,” including street network measures (Brownson et 
al., 2009).  Forsyth, et al. stressed the importance of refined and consistent methods for 
measuring the street network to avoid over- or under-estimation of such characteristics on 
physical activity (Forsyth et al., 2008).  For instance, connectivity and density consistently 
showed positive correlations with physical activity, but findings are often variable or conflicting 
(Davison and Lawson, 2006).  Such conflicts may be due to the differences in 
operationalization of these variables and the penchant for relying on proxy measures (Badland 
and Schofield, 2005).  Akin to the broad “traditional” and “suburban” categories from the above 
discussion of comparison studies, terms such as connectivity and density also tend to lack 
consistent definitions.  While connectivity and density generally refer to similar concepts, the 
actual measures often aggregate or combine concepts like land-use mix and access to 
destinations, which obfuscate street network design differences.   
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Street Networks and Health Outcomes 
The research related to actual health outcomes is also vast but comes with far less consensus than 
found in the travel behavior and physical activity strands.  Some research suggests that there are 
significant correlations between the built environment and health (Davison and Lawson, 2006; 
Dunton et al., 2009; Frank et al., 2001; Grafova, 2008; Saarloos et al., 2009; Williams et al., 
2012).  Other researchers find no significant relationship between built environmental variables 
and, for instance, BMI or the body mass index (Eid et al., 2008; Kirk et al., 2010; Sallis and 
Glanz, 2006).   

One issue has to do with what variables are included in the researcher’s definition of the built 
environment.  When inclusive of the surrounding food environment, it is significantly 
correlated with obesity and obesity-related illnesses (Bader et al., 2010; Lovasi et al., 2009; 
Wells and Yang, 2008).  For instance, Black and Macinto used multilevel regression, 
controlling for a variety of variables, to find that the availability of local food and fitness 
amenities was associated with reduced obesity (Black and Macinko, 2010).  They also found 
income to be an important factor, which is not uncommon in such health studies, as the literature 
more generally suggests that socioeconomic status (SES) variables significantly impact health 
outcomes.  Income (Lovasi et al., 2009; Panter et al., 2010), age (Cutumisu and Spence, 2009; 
Kemperman and Timmermans, 2009; Li et al., 2009; Timperio et al., 2010), and race (Coogan et 
al., 2009; Haas and Rohlfsen, 2010) are all important factors that impact our understanding of the 
built environment and health.  The overall impact of the built environment may vary by 
population and social group (Forsyth et al., 2009; Lovasi et al., 2009); thus, it is important to 
control for such SES and food environment variables in our study.  This is critical when 
attempting to isolate the street network and street design factors of interest.  While such factors 
have not been completely overlooked in the health and built environment literature, they have 
not yet been sufficiently measured and evaluated (MacDonald et al., 2010).  

This literature review aimed to focus specifically on the impact of street network variables on 
travel behavior, physical activity, and health, and as such, on synthesizing a subset of the 
literature.  Based on the inconsistent findings, especially regarding health outcomes, we argue 
that by utilizing more concise definitions and built environment metrics – specifically those 
metrics related to street network characteristics – scholars can more clearly identify significant 
trends.  The importance of the street network as a defining characteristics of the built 
environment is understudied in comparison to other aspects of the built environment (Leck, 
2006), and this paper aims to fill that gap.   
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STUDY BACKGROUND  
The goal of this paper is to explore the complex relationships between street network design and 
key indicators of health including obesity, diabetes, high blood pressure, heart disease, and 
asthma.  The study was based on an extensive built environment dataset originally collected for 
a road safety project of California cities with populations ranging from 30,000 residents to just 
over 100,000 (Marshall and Garrick, 2009, 2010a, 2011a, 2012; Marshall and Garrick, 2010b, 
2011b).  The following cities were selected from a set of over 150 California cities to best 
represent a geographically diverse collection of twelve of the safest medium-sized cities and 
twelve of the least safe based upon the road fatality rate: 

Safer Cities                     Less Safe Cities  
�    Alameda                  �    Antioch  
�    Berkeley                   �    Apple Valley  
�    Chico               �    Carlsbad  
�    Cupertino                  �    Madera  
�    Danville                    �    Morgan Hill  
�    Davis               �    Perris  
�    La Habra                  �    Redding  
�    Palo Alto                   �    Rialto  
�    San Luis Obispo         �    Temecula  
�    San Mateo                 �    Turlock  
�    Santa Barbara            �    Victorville  
�    Santa Cruz                �    West Sacramento 

The cities are all from California because we originally wanted to ensure consistency in the 
safety data, which is collected differently by each state.  This reasoning is equally essential for 
the health data.  Street network measures – including measures of street network density, street 
connectivity, and street patterns – were combined with street design characteristics, the 
California Health Interview Survey (CHIS), as well as travel behavior data and socioeconomic 
data from the Census and American Community Survey.  This information was geo-coded in a 
GIS database in order to conduct a comprehensive spatial analysis.   
 
DATA  
Health Outcomes Data  
Cross-sectional health data was collected from the California Health Interview Survey (CHIS) 
for the years 2003, 2005, 2007, and 2009.  With a range in sample size from 42,000 to 51,000 
adults, CHIS is one of the most extensive health-based telephone survey in the country of 
civilian households selected through random digit dialing (UCLA Center for Health Policy 
Research, 2009).  The sample for this analysis was restricted to adults, 18 years and older due to 
data restrictions.  For the CHIS adult sample, the interview response rate was 60%, which is 
comparable to telephone surveys carried out by the National Center for Health Statistics.  The 
health outcomes (obesity, diabetes, high blood pressure, heart disease, and asthma) represent the 
fraction of respondents self-reporting that particular disease (obesity was determined as 
BMI� 30.0 via self-reported height and weights).   

To protect individual privacy, individual person level data were aggregated to the census tract 
level by CHIS personnel.  In investigating the applicability of this level of geography for our 
study, we identified many instances where the census tract boundary extended beyond developed 
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edges and well into uninhabited and low density areas.  In other words, population density is 
not homogenous across many census tracts (Mennis, 2003).  Figure 2a depicts an example of 
this problem for a census tract from Antioch, CA, where the development intensities across the 
census tract are quite diverse.  With a population of 6,489, the calculation of population density 
would be quite different depending upon the area used for the denominator; if using the entire 
census tract, the population density is 1,750 people/sq. mi. but would be more than triple that if 
we focus on the corresponding highly developed block group shown in the top-left of Figure 2b.   

This issue of heterogeneous population distributions is not uncommon with health-related data, 
and unfortunately, such aggregated data can mask trends and the spatial variation of health 
disparities (IEHIAS, 2013).  A frequent solution is to employ spatial disaggregation techniques 
such as simple area weighting, mask area weighting, or stochastic allocation (Gallego, 2010; 
IEHIAS, 2013).  More advanced spatial disaggregation techniques typically differ from the 
simpler methods in that they incorporate supplementary data to enable the disaggregation.  For 
instance with population-based disaggregations, land use data is particularly useful (Gallego, 
2010; Gallego et al., 2011; Mennis, 2003; Sleeter and Gould, 2008).  One such technique is 
dasymetric mapping.  Dasymetric mapping techniques originated more than 150 years ago, but 
with the advent of GIS has become the subject of renewed interest and study over the last few 
decades (Eicher and Brewer, 2001).  The fundamental idea behind dasymetric mapping is to 
depict the underlying data of zonal boundaries (i.e. census tract) by dividing them into internally 
homogenous zones (Eicher and Brewer, 2001). Dasymetric mapping is often used with 
population-based data, to the point where the U.S. Geological Survey (USGS) and the European 
Environment Agency publish dasymetric population density grids for researchers (Gallego, 
2010; Sleeter and Gould, 2008).   

For the purposes of our effort, we employed the USGS methodology in GIS.  This approach is 
specifically intended for reassigning census tract-level population data to another set of 
overlapping zones and employs the National Land Cover Database as the ancillary dataset 
(Sleeter and Gould, 2008).  The basic steps included reclassifying the land use and land cover 
(LULC) codes (shown in Figure 2c) into one of four population-based categories, which are 
depicted for our Antioch example in Figure 2d.  We then broke the census tracts down into 
relatively homogenous zones using the USGS-published GIS script, based upon published areal 
weighting and empirical sampling techniques (Mennis, 2003; Sleeter and Gould, 2008).  This 
step results in a raster grid highlighting areas with homogenous population densities, which is 
illustrated in Figure 2e.  Area ratios combined with the original health outcome data allow us to 
calculate the number of people within each zone afflicted with each disease.  We then intersect 
these zones with the block group layer and again use area ratios to calculate the adjusted health 
rates.  Table 1 compares the original data to the dasymetric adjusted data; the 
population-weighted overall disease rates remain similar.  Spatially, the result is a set of health 
outcomes that will minimize the masking of health disparities during the analysis phase.   
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Street Network Data 
While many of the papers covered in the literature review point to both increased network 
density and connectivity as desirable, few successfully differentiate between these two network 
qualities with quantifiable measures.  In some papers, network density and connectivity 
measures were mistakenly used interchangeably, and in most papers, network configuration was 
ignored altogether (Marshall and Garrick, 2012).  So in order to best characterize street 
networks, we created a straightforward set of measures for the three essential street network 
characteristics of interest: 

i. Street connectivity 
ii.  Street network density 
iii.  Street configuration 

While there are abundant indices, ranging from very simple to overly complex, available to 
measure both connectivity and network density, stepwise statistical analysis helped identify 
variables resulting in the strongest models: intersection density for street network density; and 
the link-to-node ratio for street connectivity.  Intersection density tallies the total number of 
nodes or intersections, including dead ends, and divides it by the area.  Higher values signify 
higher network densities.  The link-to-node ratio divides the total number of links (i.e. road 
segments between intersections) by the total number of nodes (i.e. intersections) (Ewing, 1996; 
Handy et al., 2003; Litman, 2005).  Using the 2012 North American Detailed Streets GIS layer 
from ESRI1, we calculated both intersection density and the link-to-node ratio for the typical 
street network as well as for the same network but including pedestrian-only connections and 
alleys as well2.  Alleys are also included in the intersection density measure used by LEED-ND 
(Council, 2009).  This latter set of network density and connectivity measures – with alleys and 
pedestrian-only connections included – proved stronger in the health statistical models.   

Neither intersection density nor the link-to-node ratio imparts any sense of configuration.  To 
resolve this, we adapted a chart from Stephen Marshall’s book Streets and Patterns that 
emphasizes the major street network structure separately from the minor street network, depicted 
in Figure 3 (Marshall, 2005).  To facilitate replication, major streets were classified as those 
falling between A20 and A39 under the Feature Class Code (FCC) classification schema used by 
the Census.  The A20 series includes all primary roads that are not limited access roads, while 
the A30 series includes all secondary or connecting roads; in other words, the major streets are 
essentially the arterial and collector roads.  Understanding the role of the major streets in the 
network helped facilitate the manual classification of each of the over 1,000 block groups into 
one of the eight representative configuration types.  Although Marshall’s categories do not 
accommodate every possible pattern, they do provide a straightforward visual classification that 
can help differentiate between the most common configuration types.  Actual city patterns are 
often more complex than the representative configurations; so while actual street networks were 
not always exact replicas of the representative diagrams, there were only a handful of the over 
1,000 block groups that were not able to be confidently classified.  Table 2 displays the 
descriptive data for the analysis. 

Street Data 
We collected the following street design characteristics for every major street segment (based on 
the street categorization methodology above) using Google Earth and Google Street View:   

�  Total number of lanes 

1Please note that the 2000 Census TIGER files were used to calculate street network measures in our prior street network 
papers. 

2Please note that street network density and connectivity measures in our prior papers did not include non-automobile streets 
or alleys; as a result, the values reported in this paper are typically higher than those reported in previous papers. 
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�  Outside shoulder width 
�  Raised median (0 = no, 1 = yes) 
�  Painted median (0 = no, 1 = yes) 
�  On-street parking (0 = no, 1 = yes, 0.5 = along one side of street) 
�  Bike lanes (0 = no, 1 = yes, 0.5 = along one side of street) 
�  Sidewalks (0 = no, 1 = yes, 0.5 = along one side of street) 

This data was field verified in six cities via a sample of major streets.  For use in the statistical 
model, we aggregated the data to the block group level. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Land Use Data 
As discussed in the literature review, it is imperative for built environment/health studies to 
account for the food environment.  Hence, we purchased land use data from InfoUSA.  This 
data included addresses for every restaurant, grocery store, big box store, and fitness club in the 
24 cities.  We geocoded these land uses into GIS and disaggregated the restaurants into two 
categories: one for fast food restaurants and one for all other restaurants.  Each land use 
category (i.e. fast food restaurants, other restaurants, grocery stores, fitness clubs, and big box 
stores) was aggregated and counted at both the block group and city levels of geography.  We 
de�ne a big box store as a retail use with a single building occupying 40,000 square feet or more.  
Big box stores typically serve large market areas, possess very large parking lots, and can 
sometimes diminish the pedestrian environment, which could negatively impact active 
transportation and health outcomes.  

As part of this work, a number of land use and built environment variables were calculated and 
investigated but were unable to be used in the final models due to high correlation with other 
tested variables.  The variables in the final models were selected to maximize model 
significance.  Some of these variables include: population, population density, employment 

Figure 3 - Street Configuration Classifications, Adapted from S. Marshall [65]  
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density, mode share data, centerline length of streets per unit area, and block size. 

Socioeconomic Status (SES) Data 
SES data collected from the U.S. Census and American Community Survey included income, 
age, ethnicity, and level of education.  Income is at the household level in continuous categories 
of $10,000s.  The age categories for those 18 years or older were weighted and averaged by the 
mid-point of each categorization level.  Ethnicity categories were aggregated to create a 
variable representing the total non-white percentage.  For level of education, we aggregated the 
data into an education index score.  Scores ranged from zero to four in terms of the highest 
level of education received, with: less than a high school diploma = 0; high school degree = 1; 
bachelor’s degree = 2; master’s or professional degree = 3; doctorate = 4.  Thus, a score of 2.0 
indicates that the average adult level of education for the specified area is a bachelor’s degree.   
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METHODS 
We summarized the approach to assessing streets networks and the built environment in the data 
section; additional details can be found in our previous papers (Marshall and Garrick, 2009, 
2010a, 2011a, 2012; Marshall and Garrick, 2010b, 2011b).  This section describes the statistical 
methodology.   

The fundamental research question for this paper – whether street network characteristics and 
street design features are associated with health disparities – is tested using a multilevel 
hierarchical random effect statistical model, which over the last fifteen years has become 
accepted practice for researchers conducting spatial health studies (Burton et al., 2009; Healy, 
2001; Li et al., 2005; Radenbush and Bruk, 2002; Rundle et al., 2007; Subramanian et al., 2003).  
Our data is considered multilevel since it consists of health and built environment records on the 
first level that can be clustered into a second level of geography, in this case at the city level.  
The concept behind a multilevel hierarchical model is linking a pair of statistical models in order 
to simultaneously allow a focus on both micro-level and macro-level relationships as well as the 
interaction between the two (Healy, 2001).  This type of structure helps account for spatial 
autocorrelation and the fact that respondents in the same areas share the characteristics of those 
areas, which would violate the independence assumption of an ordinary least squares (OLS) 
regression (Ewing et al., 2003).  If we did not take this into account, the standard errors of 
regression coefficients that we are seeking to associate with our community design and street 
network characteristics would be underestimated (Ewing et al., 2003).   

The following represents the hierarchical structure: 
Level 1: Between-Block Group Disparities  
Level 2: Between-City Differences 

The first level of the model includes the health outcomes, SES data, and built environment 
characteristics of each block group, which can be modeled as a function of the characteristics of 
the block groups plus stochastic random error (Ewing et al., 2003).  This equates to each city 
having a specific regression equation portraying the association between the characteristics and 
health outcomes of the block group.  For the second level, the intercept and coefficients are 
modeled in terms of city characteristics plus random error (Ewing et al., 2003).   

The level 1 model tested health outcomes as a function of the city mean using the following 
form: 

Y ji = � 0j + � 1jxij + rij   rij ~ N(0, � 2) 

where Yji is the outcome for block group i in city j, and xij is a fixed covariate.  � 0j represents 
the mean level of the outcome in city j, and � 1j represents the effect of the block group-level 
variable on the outcome in city j. 

The expected random effects level 2 model allows the intercept and slope to vary across cities.  
The level 2 model corresponding to a level 1 random coefficients model is as follows:  

 
   
 
 
where � 00 represents the overall average outcome level (at xij = 0), and � 10 is the average effect of 
block group variables on the outcomes.  Also, the city level community data and street network 

��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�

1101

0100

1

0 ,
0

0
~

��

��
N

u

u

j

j
�

��

��

1101j

0000j

��

��

u

u

j

j



16 
�

information were added as fixed effects in this model in order to permit for the potential varying 
and cross influence of block group level and city level built environment characteristics.  For 
instance, one could imagine that living in a compact and connected block group might make 
more of a difference in a city of similar structure as compared to a city characterized by a sparse, 
disconnected street network; this modeling structure facilitates the testing of such questions 
related to the differing public health impact of neighborhood walkability as compared to 
citywide walkability.  The statistical analyses were completed with SAS 9.3 using the PROC 
MIXED procedure command.  The variables used in the final models were selected in an effort 
to maximize model significance using the AIC value.  Statistical significance at three levels (i.e. 
p<.10, p<.05; and p<.01) is noted by the asterisks in Table 3.  This methodology is common to 
other studies attempting to concurrently display the results of multiple statistical models 
(Chatman, 2013).  With respect to multicollinearity, none of the variables used in the final 
models had a Pearson correlation coefficient higher than 0.5. 

 
RESULTS 
Table 3 portrays the statistical results of the four multilevel health models, as we did not find 
statistical significance with the asthma model.  The health outcome for:  

�  Model 1 is obesity;  
�  Model 2 is diabetes;  
�  Model 3 is high blood pressure (HBP); and 
�  Model 4 is heart disease. 

The variables tested will be discussed via the following categories: street network characteristics, 
street design features, land use and the food environment, and SES variables.  The interaction 
between street network and SES factors has shown to sometimes be correlated with health 
(Boone-Heinonen et al., 2011).  While parsing out those interactions is challenging due to the 
number of confounding relationships, we tested all such relevant interactions terms (between 
every combination of street network and SES variables) and found no significant interactions.  
Also, the hierarchical terms (corresponding to the variability in slopes) are significant in every 
model; this means that we cannot reject the null hypothesis that there is no difference in slopes 
across cities for the associated health outcomes.   

Street Network Characteristics 
The street network variables represent the three fundamental characteristics of a street network: 
i) street network density; ii) street connectivity; and iii) configuration.   

Increased intersection density, a measure of street network density, is significantly correlated 
with: a reduction in obesity at the block group level; and a reduction in all four disease rates at 
the city level (which corresponds to the intersection density for the entire city).   

Rather than report elasticity measures, Table 4 and Table 5 calculate the percent change in the 
expected disease rate based upon changing the level of a single variable and holding all other 
variables at their mean.  This percent change is based upon the expected disease rate with 
respect to a reference value close to the mean value of that variable and is mathematically the 
same as elasticity measures, but easier to visualize (Noland and Quddus, 2004).  These results 
focus solely on the influence of intersection density while holding all other variables constant at 
their mean value.  Regarding street network density, for example, the results suggest that 
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reducing intersection density at the block group level from 144 intersections per square mile 
(equivalent to a 12-by-12 grid) to 81 (equivalent to a 9-by-9 grid) is associated with, on average, 
a 2.8% increase in obesity.  The same drop in intersection density across the entire city (as 
opposed to the block group level) corresponds with the following: a 33.4% increase in obesity, a 
42.4% increase in diabetes, a 12.9% increase in HBP, and a 19.7% increase in heart disease.  
These results suggest that citywide intersection density is more important to health outcomes 
than at the block group level; in other words, better health outcomes are more strongly associated 
with living in a compact city than a compact neighborhood surrounded by a sparse city. This is 
an important result in that many new developments focus on building urban enclaves with high 
intersection densities in the middle of more suburban environments.  Such developments have 
many benefits but may not be optimal for public health where our results suggest that the overall 
character of the city makes a bigger difference. 

Findings regarding street connectivity demonstrate similar trends to street network density with 
an increased link-to-node ratio at the block group level being significantly associated with lower 
rates of obesity and heart disease.  The link-to-node ratio was not found to be significant in any 
models at the city level.  Comparing a block group with a high level of street connectivity to 
that of an average level (link-to-node ratio of 2.25 vs. 1.75), we would expect an 8.6% lower rate 
of obesity and a 6.7% lower rate of heart disease.  Thus, more compact and connected street 
networks are significantly associated with improved health outcomes. 

The categorical variable representing street configuration was only significant in the obesity and 
HBP models; specifically, we found only two street network patterns to exhibit significant 
differences from the network reference type, ‘TT’ (tree-like major streets and tree-like minor 
streets).  These two network patterns were ‘GG’ (gridded major streets and gridded minor 
streets) and ‘RG’ (radial major streets and gridded minor streets).  Holding all other variables at 
their mean value (including both intersection density and the link-to-node ratio), we would 
expect a 1.0% increase in obesity for a ‘GG’ network and 47.6% increase for an ‘RG’ network at 
the block group level.  It is worth noting that 26 out of the 1,044 block groups were designated 
as an ‘RG’ pattern type, as the gridded network from our cities tended to be more orthogonal.  
For HBP, both the ‘GG’ and ‘RG’ networks were associated with almost a 10.5% drop, as 
compared to the ‘TT’ reference type.   

We also accounted for the differences in how these various network configurations tend to be 
built in practice by holding all variables at their overall mean other than street network density, 
connectivity, and configuration.  For intersection density and the link-to-node ratio, we used the 
mean value of each particular configuration and found that: the ‘GG’ network is associated with 
improved obesity, HBP, and heart disease; and the ‘RG’ network is associated with increased 
obesity but lower rates of HBP and heart disease.  These expected rates are shown at the bottom 
of Table 4. 

Whether or not the streets were curvilinear was not significant in any model.      

Street Design Features 
Most of the street design features were not significant in the health models; however, the average 
number of lanes on the major streets was significant in Models 1, 2, and 4.  Wider major streets 
with more driving lanes were indicative of increased obesity and diabetes rates. This result seems 
sensible when considering that wider major street may be indicative of an inferior pedestrian 
environment.  However, the presence of additional lanes on the major streets was also 
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associated with reduced heart disease.  This result appears counter-intuitive but could suggest 
differences in access to health care and diagnoses, as studies suggest the rate of undiagnosed 
heart disease is much higher than the rate of undiagnosed diabetes (Lloyd-Jones et al., 2010).  

At the block group level, averaging six lanes instead of two on the major streets suggested a 
28.9% increase in obesity but a similar sized decrease in heart disease (Table 4).  This same 
change to the major roads at the city level was associated with a 366.6% increase in diabetes.  
In the same diabetes model (Model 2), we found that the presence of bike lanes on the major 
roads was associated with lower rates.  Raising the percentage of bike lanes on major roads 
from 0% to 40% was associated with a 47.6% decrease in the diabetes rate. 

Land Use and the Food Environment  
In terms of the food environment, more fast food restaurants were associated with a lower HBP 
rate at the block group level and a higher diabetes rate at the city level.  The presence of a 
single big box store at the block group level was associated with a 13.7% rise in obesity rates and 
a 24.9% increase in the diabetes rate, as shown in Table 5.  In terms of other food environment 
variables: the presence of a grocery store at the block group level was associated with a slight 
decrease in HBP; and more convenience stores at the city level were associated with an increase 
in both the obesity and diabetes rates.  Just two additional convenience stores in a city over the 
average number were associated with a 16.9% increase in obesity and a 29.1% rise in diabetes.  
The other measured land use element, fitness clubs, was significant in the obesity model at the 
city level.  A city with a relatively high number of fitness clubs (20) correlated with a 24.5% 
drop in obesity rates as compared to a city with an average number (12).   

Socioeconomic Status  
At least one SES variable was significant in each of the five health models.  Since household 
income and education score were highly correlated, only the variable that resulted in a better AIC 
was used in the final model.  We also tested a series of interaction terms to determine whether 
certain SES groups were more or less impacted by street network and street design factors but 
found no significant results. 

With respect to income, higher income was associated with lower rates of obesity and lower rates 
of HBP.  More specifically, results suggest an area with poverty level household incomes 
(~$20,000) as compared to an area of approximately average income for the sample cities 
(~$60,000) is associated with an 8.4% higher obesity rate and a 6.4% higher HBP rate (Table 5).  
Age was significant in Models 3 and 4, where a neighborhood with an older population was 
correlated with increased HBP and heart disease rates.  The percent of non-white residents was 
significant in the diabetes model where an increase in the percentage of minorities was 
associated with an increase in diabetes.  Average commute time was only significant in the 
obesity model but with a contrary effect to what has been seen in several notable studies (Frank 
et al., 2004; Hoehner et al., 2012; Lindstrom, 2008; Mobley et al., 2006; Pendola and Gen, 2007; 
Wen et al., 2006).  Our results suggest that a longer commute is significantly associated with a 
lower obesity rate.  Given that many of the cities investigated for this study are very 
well-known for their active transportation and high transit mode shares, the finding that a five 
minute longer commute is associated with a 3.6% decrease in obesity seems plausible. For 
instance in cities such as Davis – which boasts the highest bicycling to work mode share in the 
country – a longer commute, if walking or biking, might very well be associated with improved 
health outcomes.   
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To further investigate this hypothesis, we compared commute times to mode share statistics but 
did not find commute time to be highly correlated with any particular mode share. The only 
evidence of high correlation between commute time and mode share surfaced when we focused 
our analysis on the eight cities with bicycle commute modes share greater than 2.5% (i.e. 
Alameda, Berkeley, Chico, Davis, Santa Barbara, Santa Cruz, and San Luis Obispo).  While 
bicycling and walking mode shares were still not highly correlated with commute time for this 
subset of cities, we found a Pearson correlation coefficient of 0.66 between transit mode share 
and the number of minutes commuting.  High transit usage has been shown in other studies to 
be associated with increased physical activity (Besser and Dannenberg, 2005; Wener and Evans, 
2007) and reduced BMI (MacDonald et al., 2010).  Similar trends could be playing a role in our 
findings, which warrants future study with individualized health and travel behavior data so that 
all modes of transportation can be examined in greater detail to better explain these relationships. 
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CONCLUSIONS 
In the existing health and built environment literature, the characterization of street networks 
lacked consistent measures and classification systems, which has left our understanding of the 
relationship between street network design and health outcomes muddled.  Accordingly, this 
research builds upon our prior work establishing appropriate measures of street network design 
elements so that we can better understand their role in promoting healthy communities.  One of 
the challenges in connecting the built environment to health disparities is accounting for the vast 
number of other factors clouding these relationships.  As a result, we also considered street 
design while controlling for land use, the food environment, and a range of socioeconomic status 
variables.  In a series of multilevel hierarchical random effect statistical models, we found the 
more compact street networks correlated with reduced rates of obesity, diabetes, high blood 
pressure, and heart disease.  Some critics point out that studies regarding health and community 
design fail to consider the potential for increased exposure to air pollution by those not in their 
cars.  However, our study also explicitly considered the same set of independent variables with 
asthma rates as the dependent variable and found no statistically significant results. 

Our categorical classification of street patterns was only significant in the obesity and HBP 
models and suggested that for the two most prevalent configurations, a full tree-like network and 
a fully gridded network, the latter was associated with a slightly higher obesity rate.  When also 
accounting for the manner in which these two network types tend to be built in practice, we find 
improved rates for obesity, HBP, and heart disease for the ‘GG’ network as opposed to the ‘TT’ 
configuration. 

It might not be common for people to explicitly contemplate health when selecting a place to 
live, but this research indicates it is worth considering.  While it is likely possible to lead a 
healthy lifestyle is most any type of neighborhood, our findings suggest that people living in 
more compact cities tend to have better health outcomes.  Whether these effects are caused by a 
healthier subset of the population self-selecting into certain types of places is unclear.  Our 
previous research showed dramatic increase in utilitarian active transportation in compact and 
connected networks with smaller streets; on the other hand, neighborhoods without such 
characteristics have the potential to inhibit active transportation, even for someone with a 
penchant for it (Marshall and Garrick, 2010a).  Such disparities in the ability to partake in 
utilitarian and/or recreational transportation may be a contributing factor to health disparities.   

Despite the extensive literature cited, there is still much work to be done to solidify our 
understanding of the link between the built environment and health outcomes.  In future 
research, we hope to overcome the limitations of our current study, specifically addressing the 
fact that our health outcomes were aggregated and self-reported.  Also, given the 
cross-sectional nature of our study, showing causation is also not feasible.  Thus, a longitudinal 
study would potentially enable us to speak upon street networks issues as a health intervention.  
Finally, it would be worth further investigating health outcomes with respect to commute times 
and how that relationship might with respect to mode choice.  Such a study would be again be 
helped by individualized health and travel behavior data.   

Nevertheless, our results suggest that the role of the street network and how we put together the 
bones of our communities should not be overlooked as a potential contributing factor to health 
outcomes.  We hope that by refining the measurement and classification of street network 
characteristics, future researchers will be able to more accurately parse-out relative impacts of 
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the built environment on health with greater clarity.  Such refinements, along with increased 
access to high quality, objective measures of individual health and activity, as well as the built 
environment, can provide evidence-based recommendations for planners and policy-makers 
attempting to build communities that help improve health.  

----- 
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